CS540 Introduction to Artificial Intelligence Lecture 15

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 18, 2022

Midterm Admin

- The midterm is:
- A : Too Easy
- B : Easy
- C : Just right
- D : Hard
- E : Too Hard

Q1

Socrative Room CS540E

Midterm Discussion

- Go over some new questions at the end of the lecture.
- Post the stats later in the week.
- If you are planning to take the make-up midterm, there is no need to notify me.
- Same format, join by Zoom, Q6 questions still on the exam (with different randomization).
- You can start the exam and not submit it, but if you submit, your current grade will be replaced.

Unsupervised Learning

Motivation

- Unsupervised learning: $x_1, x_2, ..., x_n$.
- There are a few common tasks without labels.
- Clustering: separate instances into groups.
- Novelty (outlier) detection: find instances that are different.
- Dimensionality reduction: represent each instance with a lower Byes dimensional feature vector while maintaining key characteristics.

Unsupervised Learning Applications Motivation

- Google News
- Google Photo
- Image Segmentation
- Text Processing

Hierarchical Clustering

Description

- Start with each instance as a cluster.
- Merge clusters that are closest to each other.

Result in a binary tree with close clusters as children.

Hierarchical Clustering Diagram

Description

Single Linkage Distance

• Usually, the distance between two clusters is measured by the between the distance.

$$d(C_k, C_{k'}) = \int \min \{ d(x_i, x_{i'}) : x_i \in C_k, x_{i'} \in C_{k'} \}$$

 It is the shortest distance from any instance in one cluster to any instance in the other cluster.

Complete Linkage Distance

Definition

Another measure is complete-linkage distance,

$$d(C_k, C_{k'}) = \max \{d(x_i, x_{i'}) : x_i \in C_k, x_{i'} \in C_{k'}\}$$

dist between chiler

 It is the longest distance from any instance in one cluster to any instance in the other cluster.

Average Linkage Distance Diagram

Definition

Another measure is average-linkage distance.

ther measure is average-linkage distance.

$$d(C_k, C_{k'}) = \frac{1}{|C_k| |C_{k'}|} \sum_{x_i \in C_k, x_{i'} \in C_{k'}} d(x_i, x_{i'}) \quad \text{clusters}$$

 It is the average distance from any instance in one cluster to any instance in the other cluster.

Hierarchical Clustering 1

• Given three clusters $A = \{0, 2, 6\}$, $B = \{3, 9\}$, $C = \{11\}$. What is the next iteration of hierarchical clustering with Euclidean distance and single and complete linkage?

complete dir
$$A, B = 9$$

 $A, C = 11$
 $B, C = 8$

Unsupervised Learning

Hierarchical Clustering 2 Quiz

- Given three clusters $A = \{0, 1\}, B = \{4, 6\}, C = \{8\}$. What is the next iteration of hierarchical clustering with Euclidean distance and complete linkage? mex dire
- ullet A: Merge A and B.
- ullet B: Merge A and C.
- C : Merge B and C.D : I don't understand.

Hierarchical Clustering 3

- Spring 2018 Midterm Q5
- Given three clusters $A = \{0, 1\}$, $B = \{4, 6\}$, $C = \{8\}$. What is the next iteration of hierarchical clustering with Euclidean distance and single linkage?
- \bullet A: Merge A and B.
- B : Merge A and C.
- C : Merge B and C.
- D: I don't understand.

Hierarchical Clustering 4

 Given the distance between the clusters so far. Which pair of clusters will be merged using single linkage.

		Α	В	C-	- D)	E	/
	Α	Q	1075	2013	205A	996	
	В	1075	0	32111	2687	2037	
	С	2013	3272	0	(808)	X1392	
	D	2054	2687	808	Q	1059	
	Ε	996	2037	1307	1059	0	

Hierarchical Clustering 4, Diagram Quiz

	Α	В	С	D	Ε
Α	0	1075	2013	2054	996
В	1075	0	3272	2687	2037
С	2013	3272	0	808	1307
D	2054	2687	808	0	1059
Ε	996	2037	1307	1059	0

Hierarchical Clustering 5

Quiz

QS

 Given the distance between the clusters so far. Which pair of clusters will be merged using complete linkage.

> В 2013 1075 2054 2687 1075 3272 0 808 2013 3272 0 2054 2687 808 D 0

doe(A,(D)

Max diAx) diAxi

more

E: I don't understand.

Q4 A
B
CD -) C

A 0

1975 <u>2054</u> <u>327</u>

SD 2054 3272 0

Number of Clusters

Discussion

- K can be chosen using prior knowledge about X.
- The algorithm can stop merging as soon as all the between-cluster distances are larger than some fixed R.
- The binary tree generated in the process is often called dendrogram, or taxonomy, or a hierarchy of data points.
- An example of a dendrogram is the tree of life in biology.

K Means Clustering

Description

- This is not K Nearest Neighbor.
- Start with random cluster centers.
- Assign each point to its closest center.
- Update all cluster centers as the center of its points.

K Means Clustering Demo

Description

Distortion

Distortion

- Distortion for a point is the distance from the point to its cluster center.
- Total distortion is the sum of distortion for all points.

$$D_{K} = \sum_{i=1}^{n} d\left(x_{i}, c_{k^{*}(x_{i})}\left(x_{i}\right)\right)$$

$$k^{*}\left(x\right) = \underset{k=1,2,...K}{\operatorname{argmin}} d\left(x, c_{k}\right)$$

Objective Function Counterexample Definition

Gradient Descent

Definition

 When d is the Euclidean distance. K Means algorithm is the gradient descent when distortion is the objective (cost) function.

$$\frac{\partial}{\partial c_k} \sum_{k=1}^K \sum_{x \in C_k} \|x - c_k\|_2^2 = 0$$

$$\Rightarrow -2 \sum_{x \in C_k} (x - c_k) = 0$$

$$\Rightarrow c_k = \frac{1}{|C_k|} \sum_{x \in C_k} x$$

$$\sim \sim \sim \frac{\partial c}{\partial w}$$

K Means Clustering 1

• Given data $x = \{-1, 0, 2\}$ and initial cluster centers $c_1 = 0, c_2 = 1$, what is the initial clusters and what is the / initial total distortion (sum of squares without square root)? dijt to (1 dire to Cz cluster differtion

K Means Clustering 2

Quiz

 $\begin{pmatrix} C_{11} \\ C_{12} \\ C_{13} \end{pmatrix} \begin{pmatrix} X_{11} \\ X_{12} \\ X_{13} \end{pmatrix}$

- Given data $x \neq \{-1, 0, 2\}$ and initial cluster centers $c_1 = 0, c_2 = 5$, what is the initial clusters?
- $A: \{\emptyset\}$ and $\{-1, 0, 2\}$
- $B: \{-1\}$ and $\{0, 2\}$
- $C: \{-1,0\}$ and $\{2\}$
- $D: \{-1, 0, 2\}$ and $\{\emptyset\}$
- E: I don't understand.

dist,

dist.

-C

0

15

3

P4 -> k-means try diff chister

Total Distortion 2

Quiz

7

• Given data $x = \{-1, 0, 2\}$ and initial cluster centers $c_1 = 0, c_2 = 5$, what is the initial total distortion (sum of squares without square root)?

C: 10

D:50

• E: I don't understand.

Number of Clusters

Discussion

- There are a few ways to pick the number of clusters K.
- $oldsymbol{0}$ K can be chosen using prior knowledge about X.
- 2 K can be the one that minimizes distortion? No, when K = n, distortion = 0.
- \bullet K can be the one that minimizes distortion + regularizer.

$$K^* = \underset{k}{\operatorname{argmin}} \left(D_k + \underbrace{\lambda \cdot m \cdot k \cdot \log n} \right)$$

ullet λ is a fixed constant chosen arbitrarily.

vnin distortion

Initial Clusters

Discussion

- There are a few ways to initialize the clusters.
- **1** W uniform random points in $\{x_i\}_{i=1}^n$.
- 1 uniform random point in $\{x_i\}_{i=1}^n$ as $c_1^{(0)}$, then find the farthest point in $\{x_i\}_{i=1}^n$ from $c_1^{(0)}$ as $c_2^{(0)}$, and find the farthest point in $\{x_i\}_{i=1}^n$ from the closer of $c_1^{(0)}$ and $c_2^{(0)}$ as $c_3^{(0)}$, and repeat this K times.

Gaussian Mixture Model

Discussion

- In K means, each instance belong to one cluster with certainty.
- One continuous version is called the Gaussian mixture model: each instance belongs to one of the clusters with a positive probability.
- The model can be trained using Expectation Maximization Algorithm (EM Algorithm).

back 7:15

Gaussian Mixture Model Demo

Discussion