CS540 Introduction to Artificial Intelligence
 Lecture 16

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { July 18, } 2022
$$

Random Choice 1
 Quiz

- Pick a random choice.
- A :
- B :
- C :
- D :
- E :

Random Choice 2
 Quiz

- Pick the choice you think is the least popular.
- A :
- B :
- C :
- D :
- E :

Random Choice 3

Quiz

- Pick the choice based on the last digit of your ID.
- A:0-1
- $B: 2-3$
- C: 4-5
- $D: 6-7$
- $E: 8-9$

Unsupervised Learning

Motivation

- Supervised learning: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$.
- Unsupervised learning: $x_{1}, x_{2}, \ldots, x_{n}$.
- There are a few common tasks without labels.
(1) Clustering: separate instances into groups.
(2) Novelty (outlier) detection: find instances that are different.
(3) Dimensionality reduction: represent each instance with a lower dimensional feature vector while maintaining key characteristics.

High Dimensional Data

Motivation

- High dimensional data are training set with a lot of features.
(1) Document classification.
(2) MEG brain imaging.
(3) Handwritten digits (or images in general).

Low Dimension Representation

Motivation

- Unsupervised learning techniques are used to find low dimensional representation.
(1) Visualization.
(2) Efficient storage.
(3) Better generalization.
(c) Noise removal.

Dimension Reduction Demo

Motivation

Projection

Definition

- The projection of x_{i} onto a unit vector u_{k} is the vector in the direction of u_{k} that is the closest to x_{i}.

$$
\operatorname{proj}_{u_{k}} x_{i}=\left(\frac{u_{k}^{T} x_{i}}{u_{k}^{T} u_{k}}\right) u_{k}=u_{k}^{T} x_{i} u_{k}
$$

- The length of the projection of x_{i} onto a unit vector u_{k} is $u_{k}^{T} x_{i}$.

$$
\left\|\operatorname{proj}_{u_{k}} x_{i}\right\|_{2}=u_{k}^{T} x_{i}
$$

Variance

Definition

- The sample variance of a data set $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the sum of the squared distance from the mean.

$$
\begin{aligned}
X & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right] \\
\hat{\mu} & =\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
\hat{\Sigma} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)\left(x_{i}-\hat{\mu}\right)^{T}
\end{aligned}
$$

Projection Example 1

Quiz

- What is the projection of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 2\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and what is the projected variance?

Projection Example 3

Quiz

- What is the projection of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$?
- $A:\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]^{T}$
- $B:\left[\begin{array}{lll}3 & 3 & 3\end{array}\right]^{T}$
- $C:\left[\begin{array}{lll}4 & 4 & 4\end{array}\right]^{T}$
- $D:\left[\begin{array}{lll}6 & 6 & 6\end{array}\right]^{T}$
- E : I don't understand.

Projection Example 4

Quiz

- What is the projection variance of $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ onto $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$?
- $A: 0$
- $B: 12$
- C: 24
- D:48
- $E: I$ don't understand.

Maximum Variance Directions

Definition

- The goal is to find the direction that maximizes the projected variance.

$$
\begin{aligned}
& \max _{u_{k}} u_{k}^{T} \hat{\Sigma} u_{k} \text { such that } u_{k}^{T} u_{k}=1 \\
& \Rightarrow \max _{u_{k}} u_{k}^{T} \hat{\Sigma} u_{k}-\lambda u_{k}^{T} u_{k} \\
& \Rightarrow \hat{\Sigma} u_{k}=\lambda u_{k}
\end{aligned}
$$

Eigenvalue

Definition

- The λ represents the projected variance.

$$
u_{k}^{T} \hat{\Sigma} u_{k}=u_{k}^{T} \lambda u_{k}=\lambda
$$

- The larger the variance, the larger the variability in direction u_{k}. There are m eigenvalues for a symmetric positive semidefinite matrix (for example, $X^{T} X$ is always symmetric PSD). Order the eigenvectors u_{k} by the size of their corresponding eigenvalues λ_{k}.

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{m}
$$

Eigenvalue Algorithm

Definition

- Solving eigenvalue using the definition (characteristic polynomial) is computationally inefficient.

$$
\left(\hat{\Sigma}-\lambda_{k} I\right) u_{k}=0 \Rightarrow \operatorname{det}\left(\hat{\Sigma}-\lambda_{k} I\right)=0
$$

- There are many fast eigenvalue algorithms that computes the spectral (eigen) decomposition for real symmetric matrices. Columns of Q are unit eigenvectors and diagonal elements of D are eigenvalues.

$$
\begin{aligned}
\hat{\Sigma} & =P D P^{-1}, D \text { is diagonal } \\
& =Q D Q^{T}, \text { if } Q \text { is orthogonal, i.e. } Q^{T} Q=I
\end{aligned}
$$

Spectral Decomposition Example 1

Quiz

- Given the following spectral decomposition of $\hat{\Sigma}$, what are the first two principal components?

$$
\hat{\Sigma}=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Spectral Decomposition Example 2

Quiz

- Given the following $\hat{\Sigma}$, what are the first two principal components?

$$
\hat{\Sigma}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

- $A:\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathrm{B}:\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathrm{C}:\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \mathrm{D}:\left[\begin{array}{l}0 \\ 5 \\ 0\end{array}\right], \mathrm{E}:\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

- The original feature space is m dimensional.

$$
\left(x_{i 1}, x_{i 2}, \ldots, x_{i m}\right)^{T}
$$

- The new feature space is K dimensional.

$$
\left(u_{1}^{T} x_{i}, u_{2}^{T} x_{i}, \ldots, u_{K}^{T} x_{i}\right)^{T}
$$

- Other supervised learning algorithms can be applied on the new features.

Eigenface

Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$
x_{i}=\sum_{k=1}^{m}\left(u_{k}^{T} x_{i}\right) u_{k} \approx \sum_{k=1}^{K}\left(u_{k}^{T} x_{i}\right) u_{k}
$$

- Eigenfaces and SVM can be combined to detect or recognize faces.

Reduced Space Example 1

Quiz

- If $u_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right]$ and $u_{2}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right]$. If one original item is
$x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. What is its new representation and the
reconstructed vector using only the two principal components?

Reduced Space Example 1 Diagram

 Quiz
Reduced Space Example 2
 Quiz

- $\hat{\Sigma}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3\end{array}\right]$. If one original data is $x=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. What is
the reconstructed vector using only the first two principal components?
- $A:\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \mathrm{B}:\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right], \mathrm{C}:\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right], \mathrm{D}:\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right], \mathrm{E}:$ I don't understand.

Autoencoder

Discussion

- A multi-layer neural network with the same input and output $y_{i}=x_{i}$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input m.
- The hidden units form an encoding of the input with reduced dimensionality.

Autoencoder Diagram

Discussion

Kernel PCA

Discussion

- A kernel can be applied before finding the principal components.

$$
\hat{\Sigma}=\frac{1}{n-1} \sum_{i=1}^{n} \varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{T}
$$

- The principal components can be found without explicitly computing $\varphi\left(x_{i}\right)$, similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.

