
Dimensionality Reduction Principal Component Analysis Non-linear PCA

CS540 Introduction to Artificial Intelligence
Lecture 16

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 18, 2022



Dimensionality Reduction Principal Component Analysis Non-linear PCA

Random Choice 1
Quiz
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Random Choice 2
Quiz
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Random Choice 3
Quiz
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Unsupervised Learning
Motivation
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High Dimensional Data
Motivation

High dimensional data are training set with a lot of features.

1 Document classification.

2 MEG brain imaging.

3 Handwritten digits (or images in general).
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Low Dimension Representation
Motivation

Unsupervised learning techniques are used to find low
dimensional representation.

1 Visualization.

2 Efficient storage.

3 Better generalization.

4 Noise removal.
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Dimension Reduction Demo
Motivation
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Projection
Definition

The projection of xi onto a unit vector uk is the vector in the
direction of uk that is the closest to xi .

proj ukxi �

�
uTk xi

uTk uk



uk � uTk xiuk

The length of the projection of xi onto a unit vector uk is
uTk xi . �� proj ukxi

��
2
� uTk xi
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Variance
Definition

The sample variance of a data set tx1, x2, ..., xnu is the sum of
the squared distance from the mean.

X �

�
���
x1
x2
...
xn

�
���

µ̂ �
1

n

ņ

i�1

xi

Σ̂ �
1

n � 1

ņ

i�1

pxi � µ̂q pxi � µ̂qT



Dimensionality Reduction Principal Component Analysis Non-linear PCA

Projection Example 1
Quiz
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Projection Example 3
Quiz
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Projection Example 4
Quiz
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Maximum Variance Directions
Definition

The goal is to find the direction that maximizes the projected
variance.

max
uk

uTk Σ̂uk such that uTk uk � 1

ñ max
uk

uTk Σ̂uk � λuTk uk

ñ Σ̂uk � λuk
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Eigenvalue
Definition

The λ represents the projected variance.

uTk Σ̂uk � uTk λuk � λ

The larger the variance, the larger the variability in direction
uk . There are m eigenvalues for a symmetric positive
semidefinite matrix (for example, XTX is always symmetric
PSD). Order the eigenvectors uk by the size of their
corresponding eigenvalues λk.

λ1 ¥ λ2 ¥ ... ¥ λm
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Eigenvalue Algorithm
Definition

Solving eigenvalue using the definition (characteristic
polynomial) is computationally inefficient.�

Σ̂ � λk I
	
uk � 0 ñ det

�
Σ̂ � λk I

	
� 0

There are many fast eigenvalue algorithms that computes the
spectral (eigen) decomposition for real symmetric matrices.
Columns of Q are unit eigenvectors and diagonal elements of
D are eigenvalues.

Σ̂ � PDP�1,D is diagonal

� QDQT , if Q is orthogonal, i.e. QTQ � I
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Spectral Decomposition Example 1
Quiz
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Spectral Decomposition Example 2
Quiz
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Number of Dimensions
Discussion

There are a few ways to choose the number of principal
components K .

K can be selected given prior knowledge or requirement.

K can be the number of non-zero eigenvalues.

K can be the number of eigenvalues that are large (larger
than some threshold).
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Reduced Feature Space
Discussion

The original feature space is m dimensional.

pxi1, xi2, ..., ximq
T

The new feature space is K dimensional.�
uT1 xi , u

T
2 xi , ..., u

T
K xi

	T

Other supervised learning algorithms can be applied on the
new features.
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Eigenface
Discussion

Eigenfaces are eigenvectors of face images (pixel intensities or
HOG features).

Every face can be written as a linear combination of
eigenfaces. The coefficients determine specific faces.

xi �
m̧

k�1

�
uTk xi

	
uk �

Ķ

k�1

�
uTk xi

	
uk

Eigenfaces and SVM can be combined to detect or recognize
faces.
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Reduced Space Example 1
Quiz
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Reduced Space Example 1 Diagram
Quiz
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Reduced Space Example 2
Quiz
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Autoencoder
Discussion

A multi-layer neural network with the same input and output
yi � xi is called an autoencoder.

The hidden layers have fewer units than the dimension of the
input m.

The hidden units form an encoding of the input with reduced
dimensionality.
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Autoencoder Diagram
Discussion
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Kernel PCA
Discussion

A kernel can be applied before finding the principal
components.

Σ̂ �
1

n � 1

ņ

i�1

ϕ pxi qϕ pxi q
T

The principal components can be found without explicitly
computing ϕ pxi q, similar to the kernel trick for support vector
machines.

Kernel PCA is a non-linear dimensionality reduction method.
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