CS540 Introduction to Artificial Intelligence Lecture 16

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 18, 2022

•00000

Random Choice 1

Quiz

PI,PR

P3 dhe tonight t I week] p6 one week

P4 can start, not submite.

Pick a random choice.

- A:
- B:
- C:
- D:
- E :

Random Choice 2

- Pick the choice you think is the least popular.
- A:
- B:
- C :
- D:
- ∍ E :

Random Choice 3

- Pick the choice based on the last digit of your ID.
- A: 0 − 1
- B: 2 3
- C : 4 − 5
- D:6-7
- E:8-9

Q10

Unsupervised Learning

- Supervised learning: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Unsupervised learning: $x_1, x_2, ..., x_n$.
- There are a few common tasks without labels.
- Clustering: separate instances into groups.
- Novelty (outlier) detection: find instances that are different.
- Oimensionality reduction: represent each instance with a lower dimensional feature vector while maintaining key characteristics.

High Dimensional Data

- High dimensional data are training set with a lot of features.
- Document classification.
- MEG brain imaging.
- Mandwritten digits (or images in general).

Low Dimension Representation

- Unsupervised learning techniques are used to find low dimensional representation.
- Visualization.
- Efficient storage.
- Better generalization.
- Noise removal.

Dimension Reduction Demo

Projection

Definition

 The projection of x_i onto a unit vector u_k is the vector in the direction of u_k that is the closest to x_i.

$$\operatorname{proj}_{u_{k}} x_{i} = \left(\frac{u_{k}^{T} x_{i}}{u_{k}^{T} u_{k}}\right) u_{k} = \underbrace{u_{k}^{T} x_{i} u_{k}}_{f} \left(1 = u_{k}^{T} + u_{k}^{T} + u_{k}^{T}\right) u_{k}^{T}$$

$$= \underbrace{\left(\frac{u_{k}^{T} x_{i}}{u_{k}^{T} u_{k}}\right) u_{k}}_{f} = \underbrace{\left(\frac{u_{k}^{T} x_{i}}{u_{k}^{T} u_{k}}\right) u_{k}}_{f} \left(1 = u_{k}^{T} + u_{k}^{T}\right) u_{k}^{T}$$

• The length of the projection of x_i onto a unit vector u_k is $u_k^T x_i$.

$$\|\operatorname{proj} u_k x_i\|_2 = u_k^T x_i$$

Variance

Definition

• The sample variance of a data set $\{x_1, x_2, ..., x_n\}$ is the sum of the squared distance from the mean.

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \qquad (x_i - \hat{\mu})^T (x_i - \hat{\mu})$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i \qquad \text{obsequents}$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^n (x_i - \hat{\mu}) (x_i - \hat{\mu})^T \qquad \text{outer product.}$$

Projection Example 1

Quiz
$$\frac{1}{2} \left[\left(\sum_{i} - \mu_{i} \right)^{2} + \left(\frac{\sqrt{2}}{2} - \mu_{i} \right)^{2} \right]$$

Where $\mu = \frac{1}{2} \left(\sqrt{2} + \frac{\sqrt{2}}{2} \right)$

What is the projection of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$ onto $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and what is the projected variance?

Whit vector $\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{$

Projection Example 3

Quiz

- $A: \begin{bmatrix} 2 & 2 & 2 \end{bmatrix}^T$
 - B: [3 3 3]
 - C: [4 4 4]^T
 - D: [6 6 6]^T
 - E: I don't understand.

$$\frac{6}{3}$$
. $\left(\frac{1}{1} \right) = z \left(\frac{1}{1} \right)$

$$\int \left(\int_{\mathcal{D}} \right)^2 + \left(\int_{\mathcal{D$$

Projection Example 4

• What is the projection variance of

- A:0
 - B: 12
 - C:24
 - D:48
 - E: I don't understand.

Maximum Variance Directions Definition

The goal is to find the direction that maximizes the projected

Eigenvalue Definition

• The λ represents the projected variance.

$$u_k^T \hat{\Sigma} u_k = u_k^T \lambda u_k = \lambda$$

The larger the variance, the larger the variability in direction u_k. There are m eigenvalues for a symmetric positive semidefinite matrix (for example, X^TX is always symmetric PSD). Order the eigenvectors u_k by the size of their corresponding eigenvalues λ_k.

$$\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_m$$

Eigenvalue Algorithm

Definition

 Solving eigenvalue using the definition (characteristic polynomial) is computationally inefficient.

$$(\hat{\Sigma} - \lambda_k I) u_k = 0 \Rightarrow \det(\hat{\Sigma} - \lambda_k I) = 0$$

 There are many fast eigenvalue algorithms that computes the spectral (eigen) decomposition for real symmetric matrices.
 Columns of Q are unit eigenvectors and diagonal elements of D are eigenvalues.

$$\hat{\Sigma} = PDP^{-1}, D$$
 is diagonal $= QDQ^T$, if Q is orthogonal, i.e. $Q^TQ = I$

Spectral Decomposition Example 1

$$\Phi C_3 = \begin{pmatrix} O \\ I \\ O \end{pmatrix}$$

 Given the following spectral decomposition of Σ, what are the first two principal components?

Spectral Decomposition Example 2

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components $K = \{2, 3\}$
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

validation Leg compare K

Reduced Feature Space

Discussion

• The original feature space is *m* dimensional.

$$(x_{i1}, x_{i2}, ..., x_{im})^T$$

The new feature space is K dimensional.

 Other supervised learning algorithms can be applied on the new features.

Eigenface

Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$x_{i} = \sum_{k=1}^{m} \left(u_{k}^{T} x_{i} \right) u_{k} \approx \sum_{k=1}^{K} \left(u_{k}^{T} x_{i} \right) u_{k}$$

Eigenfaces and SVM can be combined to detect or recognize faces.

Reduced Space Example 1

Reduced Space Example 1 Diagram Quiz

Reduced Space Example 2

$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is the reconstructed vector using only the first two principal components?

• $A : \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, B: $\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, C: $\begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$, D: $\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, E: I don't understand.

$$2 \cdot P(1+3) = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$$

Autoencoder

Discussion

hon-linear
$$P(A' = a = g(w^7x+b)$$
 $P(A = a = w^7x+b)$

- A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.
 - The hidden layers have fewer units than the dimension of the input m.
 - The hidden units form an encoding of the input with reduced dimensionality.

Autoencoder Diagram

Discussion

Kernel PCA

Discussion

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^T$$
- feature map

- The principal components can be found without explicitly computing φ (x_i), similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.