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@ Pick the choice based on the last digit of your ID.
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Unsupervised Learning

Motivation

e Supervised learning: (x1,y1), (X2, ¥2) ...y (Xns ¥n) -
@ Unsupervised learning: xi,x2,..., X, .

@ [here are a few common tasks without labels.

( © Clustering: separate instances into groups.
Novelty (outlier) detection: find instances that are different.

Dimensionality reduction: represent each instance with a lower
dimensional feature vector while maintaining key
characteristics.
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High Dimensional Data

Motivation

e High dimensional data are training set with a lot of features.

@ Document classification. &—
@ MEG brain imaging. <
© Handwritten digits (or images in general). ¢
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Low Dimension Representation

Motivation

@ Unsupervised learning techniques are used to find low
dimensional representation.

© Visualization. \
@ Efficient storage. — /7 \ A
N O JUm

\

© Better generalization. ¢~ =
| z
© Noise removal. & J/
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Projection

Definition

@ The projection of x; onto a unit vector uy is the vector in the
direction of uy that is the closest to x;.

| ul x;
pProjJ ,. Xi = Uy U Xjlg = 2

éc u\c "( not (/m)‘l Veety-

@ The length of the projection of x; onto a unit vector uy is

U,Z-X,'.

| Proj , Xi , = u! x;

———
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Variance

Definition

@ The sample variance of a data set

X1
X2

Non-linear PCA

{x1,X2,.... Xp} is the sum of
the squared distance from the mean.
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Projection Example 1
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Projection Example 3
Quiz
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Projection Example 4
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Maximum Variance Directions

Definition

@ The goal is to find the direction that maximizes the projected
variance.

T

max u, S uy, suc/b_\;chat u,;ru =1
W ‘ S — —
'Y &

= maxu) Yug — Au) uy
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Eigenvalue

Definition

@ The A represents the projected variance.

Zuk = U )\uk = )\

N

@ The larger the variance, the larger the variability in direction
ug. There are m eigenvalues for a symmetric positive
semidefinite matrix (for example, X7 X is always symmetric
PSD). Order the eigenvectors uy by the size of their
corresponding eigenvalues A

ALZ A2 2. 2 Am
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Eigenvalue Algorithm

Definition

@ Solving eigenvalue using the definition (characteristic
polynomial) is computationally inefficient.

()":—/\k/)uﬁoﬁ det (i—)\k/) — 0

@ There are many fast eigenvalue algorithms that computes the
spectral (eigen) decomposition for real symmetric matrices.
Columns of @ are unit eigenvectors and diagonal elements of
D are eigenvalues.

S =PDP ' Dis diagonal
= QDQ', if Q is orthogonal, i.e. QT Q = I

ear PCA
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Spectral Decomposition Example Tvo A
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e Given the following spectral decomposition of 5, what are the
first two_principal components?
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Spectral Decomposition Example 2

Quiz
up P vt bol
@ Given the following 5, what are the first two principal ¢, \
A C.V
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Number of Dimensions

Discussion

@ There are a few ways to choose the number of principal
components K. <, [v

@ K can be selected given prior knowledge or requirement.

@ K can be the number of nonSz€ro eigenvalues.

@ K can be the number of‘eigenvalues that areTarge (larger
than some threshold). 3

VM\I‘“AUT”‘V\ LQ.(:
Cow ph~e K,
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Reduced Feature Space

Discussion

e The original feature space is m dimensional.

-
/ (Xi1, Xi2; ---5 Xim)
g

N

(x
7)-% ) .
@ The new feature space |s§rz<mflmen5|onal.

/ fr)eh 2ot
u1 x;) u2 Xy ooes qu,)

%ﬂd FC| 6’(1 Ve
ther supervised learning algorithms can be applied on the

new features. )
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Eigenface

Discussion

e Eigenfaces are eigenvectors of face images (pixel intensities or
HOG features).

e Every face can be written as a linear combination of (14
eigenfaces. The coefhcnents determine specific faces. ’;—;Nrﬁ

("%
K <
X;: e E (uk x,) uf =~ (uka,-) u, 1%

k=1 k=1
" !’ - L.
= 190 02
e Eigenfaces and SVM can be combined to detect or recognize
faces. 7 = “2

(\41)?) = CQ;@

PC1  PCL
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Reduced Space Example 1

Quiz
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Reduced Space Example 1 Diagram
Quiz
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Dimensionality Reduction

Reduced Space Example 2

Quiz
1 00 1]
2> =10 5 0] . Ifoneoriginal datais x = | 2| . What is
0 0 3 L3
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Autoencoder N

Discussion

—

how ~ lihaa,. nPUt' = O 3‘\%_( LYY N
(o

S
Pl A = 4= W ‘F/l" X! !
@ A multi-layer neural network with the same input and outpu/'t\\
y; = x; i1s called an autoencoder.
@ The hidden layers have fewer units than the dimension of the
Input m.
@ The hidden units form an encoding of the input with reduced
dimensionality.
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Autoencoder Diagram

Discussion
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Kernel PCA
Discussion S.\//\,\

@ A kernel can be applied before finding the principal

components.
. 1 &
> f- Y o) e )’
back — L= e SV /M
=1 (\
é.}\y ‘Cta\f'lﬂhe nop “— "f—
"~ @ The principal components can be found without explicitly ?ﬁ,

computing ¢ (x;), similar to the kernel trick for support vector b
machines. K

S o

e Kernel PCA js a non-linear dimensionality reduction mew






