CS540 Introduction to Artificial Intelligence
 Lecture 17

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer
August 3, 2022

Bridge and Torch Game

Motivation

- Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

A	B	C	D
1	2	4	5

- What is the minimum total time required for everyone to cross the river?
- $A: 10, \mathrm{~B}: 11, \mathrm{C}: 12, \mathrm{D}: 13, \mathrm{E}: 14$

Due Dates and Grades

Admin

- Next Monday: M8, M9, P4
- Next, next Monday: M10, M11, P5
- Next, next Thursday and Friday: exams

Bridge and Torch Game States
 Motivation

Search Problem Applications

Motivation

- Puzzles and games.
- Navigation: route finding.
- Motion planning.
- Scheduling.

Wolf, Sheep, Cabbage Example

Motivation

8 Puzzle Example

Motivation

Sizes of State Space

Motivation

- Tic Tac Toe: 10^{3}
- Checkers: 10^{20}
- Chess: 10^{50}
- Go: 10^{170}

Water Jugs Example

Definition

Performance

Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges $c=1$.

Complexity

Definition

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state. This means assuming a constant cost of 1 , the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is b, the maximum number of actions associated with a state.

$$
b=\max _{s \in V}\left|s^{\prime}(s)\right|
$$

Breadth First Search

Description

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

BFS Example 1

Quiz

- Suppose the states are positive integers between 1 and 10 , initial state is 1 , goal state is 9 , successors of i is $2 i$ and $2 i+1$ (if exist). What a BFS expansion sequence?

BFS Example 1 Diagram

Quiz

BFS Example 2

Quiz

- Suppose the states are integers between 1 and $2^{10}=1024$.

The initial state is 1 , and the goal state is 1024 . The successors of a state i are $2 i$ and $2 i+1$, if exist. How many states are expanded during a BFS search?

- $A: 10$
- $B: 11$
- C: 12
- D: 1023
- E: 1024

BFS Example 3

Quiz

- Suppose the states are integers between 1 and $2^{10}-1=1023$. The initial state is 1 , and the goal state is 1023. The successors of a state i are $2 i$ and $2 i+1$, if exist. How many states are expanded during a BFS search?
- A : 10
- $B: 11$
- $C: 12$
- $D: 1023$
- E: 1024

Breadth First Search Performance

Discussion

- BFS is complete.
- BFS is optimal with $c=1$.

Breadth First Search Complexity

Discussion

- Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$
T=b+b^{2}+\ldots+b^{d}
$$

- Space complexity: the worst case is storing all vertices at depth d is in the frontier.

$$
S=b^{d}
$$

Depth First Search

Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

DFS Example 1

Quiz

- Suppose the states are positive integers between 1 and 10 , initial state is 1 , goal state is 9 , successors of i is $2 i$ and $2 i+1$ (if exist). What a DFS expansion sequence?

DFS Example 1 Diagram

[^0]
DFS Example 2

Quiz

- Suppose the states are integers between 1 and $2^{10}=1024$.

The initial state is 1 , and the goal state is 1024 . The successors of a state i are $2 i$ and $2 i+1$, if exist. How many states are expanded during a DFS search?

- $A: 10$
- $B: 11$
- $C: 12$
- D: 1023
- E: 1024

DFS Example 3

Quiz

- Suppose the states are integers between 1 and $2^{10}-1=1023$. The initial state is 1 , and the goal state is 1023. The successors of a state i are $2 i$ and $2 i+1$, if exist. How many states are expanded during a DFS search?
- A : 10
- $B: 11$
- $C: 12$
- $D: 1023$
- E: 1024

Depth First Search Performance

Discussion

- DFS is incomplete if $D=\infty$.
- DFS is not optimal.

Depth First Search Complexity

Discussion

- Time complexity: the worst case occurs when the goal is the root of the last subtree expanded in the whole graph.

$$
T=b^{D-d+1} \ldots+b^{D-1}+b^{D}
$$

- Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

$$
S=(b-1) D+1
$$

Iterative Deepening Search

Description

- DFS but stop if path length >1
- repeat DFS but stop if path length >2
- ...
- repeat DFS but stop if path length $>d$

IDS Example 1

Quiz

- Suppose the states are positive integers between 1 and 10 , initial state is 1 , goal state is 9 , successors of i is $2 i$ and $2 i+1$ (if exist). What a IDS expansion sequence?

IDS Example 1 Diagram
 Quiz

Iterative Deepening Search Performance

Discussion

- IDS is complete.
- IDS is optimal with $c=1$.

Iterative Deepening Search Complexity

Discussion

- Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$
T=d b+(d-1) b^{2}+\ldots+3 b^{d-2}+2 b^{d-1}+1 b^{d}
$$

- Space complexity: it has the same space complexity as DFS.

$$
S=(b-1) d
$$

Configuration Space

Discussion

Summary

Discussion

- Search:
(1) Uninformed: Breadth first search \rightarrow Add states at the end \rightarrow Remove states from the front \rightarrow Complete + Optimal.
(2) Uninformed: Depth first search \rightarrow Add states to the front \rightarrow Remove states to the front \rightarrow Incomplete + Not optimal.
(3) Uninformed: Itervative deepening search \rightarrow DFS with depth limits $1,2, \ldots \rightarrow$ Complete + Optimal.
(9) Informed: Uniform cost search
(3) Informed: Best first greedy search
(0) Informed: A search
(1) Informed: A star search

[^0]: Quiz

