CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 3, 2022

Bridge and Torch Game

Due Dates and Grades

Bridge and Torch Game States Motivation

Search Problem Applications

Motivation

Wolf, Sheep, Cabbage Example Motivation

8 Puzzle Example

Motivation

Sizes of State Space

• Tic Tac Toe: 10^3

• Checkers: 10^{20}

• Chess: 10⁵⁰

• Go: 10¹⁷⁰

Water Jugs Example Definition

Performance Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges c=1.

Complexity

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state.
 This means assuming a constant cost of 1, the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is *b*, the maximum number of actions associated with a state.

$$b = \max_{s \in V} \left| s'(s) \right|$$

Breadth First Search Description

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

BFS Example 1

BFS Example 1 Diagram

BFS Example 2

BFS Example 3

Breadth First Search Performance

Discussion

- BFS is complete.
- BFS is optimal with c = 1.

Breadth First Search Complexity

Discussion

• Time complexity: the worst case occurs when the goal is the last vertex at depth *d*.

$$T = b + b^2 + ... + b^d$$

• Space complexity: the worst case is storing all vertices at depth *d* is in the frontier.

$$S = b^d$$

Depth First Search Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

DFS Example 1

DFS Example 1 Diagram

DFS Example 2

DFS Example 3

Depth First Search Performance

- DFS is incomplete if $D = \infty$.
- DFS is not optimal.

Depth First Search Complexity

Discussion

• Time complexity: the worst case occurs when the goal is the root of the last subtree expanded in the whole graph.

$$T = b^{D-d+1}... + b^{D-1} + b^{D}$$

• Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

$$S = (b-1)D + 1$$

Iterative Deepening Search Description

- \bullet DFS but stop if path length > 1
- repeat DFS but stop if path length > 2
- ...
- repeat DFS but stop if path length > d

IDS Example 1

IDS Example 1 Diagram

Iterative Deepening Search Performance

- IDS is complete.
- IDS is optimal with c = 1.

Iterative Deepening Search Complexity

Discussion

• Time complexity: the worst case occurs when the goal is the last vertex at depth *d*.

$$T = db + (d-1)b^2 + ... + 3b^{d-2} + 2b^{d-1} + 1b^d$$

• Space complexity: it has the same space complexity as DFS.

$$S = (b-1) d$$

Configuration Space

Discussion

Summary

Discussion