CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 25, 2022

Summary

Description

- Unsupervised learning:
- ① Clustering: Hierachical → Start with singleton clusters → Merge closest (single, complete linkage) clusters → Repeat.
- ② Clustering: K-Means \rightarrow Start with random centers \rightarrow Find closest center to every point \rightarrow Update centers \rightarrow Repeat.
- Oimensionality Reduction: Principal Component Analysis → Find varinaces → Find directions (principal components) with the largest projected variances (eigenvalues) → Find projection onto the principal direction (original points can be reconstructed).

Bridge and Torch Game

Motivation

12

Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

A B C D
1 2 4 5

What is the minimum total time required for everyone to cross

the river?

• A: 10, B: 11, C: 12 D: 13, E: 14

Make-Up Midterm

3

This

• Wednesday 5 : 30 to 8 : 30, join by Zoom, same format.

30

- 28 questions, 1 question starts with "Consider the following Markov Decision Process.", ignore the question (leave it blank or enter -1 or something evaluate-able).
 - You can choose to start the exam but not submit it.

post stats - make individual ords.

Search Problem Applications

Motivation

- Puzzles and games.Navigation: route finding.
- Motion planning.
- Scheduling.

Wolf, Sheep, Cabbage Example

Motivation

Puzzle Example Motivation

Sizes of State Space

Motivation

• Checkers: 10^{20}

• Chess: 10⁵⁰

• Go: 10^{170}

Water Jugs Example

Definition

Performance

Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges c = 1.

Complexity

Definition

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state.
 This means assuming a constant cost of 1, the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is b, the maximum number of actions associated with a state.

$$b = \max_{s \in V} \left| s'\left(s\right) \right|$$

Breadth First Search

Description

BES

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

BFS Example 1 Quiz

 Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a BFS expansion sequence? list > frontier search tree

BFS Example 1 Diagram

Quiz

BFS Example 2

Quiz

• Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?

- A:10

■ B : 11

C: 12

D: 1023

E : 1024

moved

from lise

(Q. stade)

22-4

2'-13'9

XZXXXXX 9 10 1, 12 17 14 15

BFS Example 3

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BES search?

A: 10

B:11

• C:12

• D : 1023-

• E: 1024

Breadth First Search Performance

Discussion

- BFS is complete.
- BFS is optimal with c = 1.

Breadth First Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = b + b^2 + \dots + b^d$$

 Space complexity: the worst case is storing all vertices at depth d is in the frontier.

$$S = b^d$$

Depth First Search

Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

DFS Example 1 Quiz

Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a DFS expansion sequence?

DFS Example 1 Diagram

DFS Example 2

Quiz

• Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?

• A: 10 • B: 11

D: 1023

E: 1024

DFS Example 3

Quiz

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?

B:11

• C:12

• D: 1023

• E : 1024

Depth First Search Performance

Discussion

- DFS is incomplete if $D = \infty$.
- DFS is not optimal.

Depth First Search Complexity

Discussion

(It b rb + ~ 6 D -(1+b+b+,~ 60)

$$T = b^{D-d+1} \dots + b^{D-1} + b^D$$

• Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

max # children of state

$$= (b-1)D+1$$
Other Children

States in path

Iterative Deepening Search

Description

- ullet DFS but stop if path length > 1
- repeat DFS but stop if path length > 2
- ...
- repeat DFS but stop if path length > d

IDS Example 1

Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a IDS expansion sequence?

IDS Example 1 Diagram

Iterative Deepening Search Performance

Discussion

- IDS is complete.
- IDS is optimal with c = 1.

Iterative Deepening Search, Complexity

Discussion

COSTED COSTE

1+6 1+6+6 + 1+6+6d Colt < 2

Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = db + (d-1)b^{2} + \dots + 3b^{d-2} + 2b^{d-1} + 1b^{d}$$

Space complexity: it has the same space complexity as DFS.

$$S = (b-1) d$$

Configuration Space

Summary

Discussion

- Search:
- Uniformed: Breadth first search → Add states at the end → Remove states from the front → Complete + Optimal.
- Uniformed: Depth first search → Add states to the front → Remove states to the front → Incomplete + Not optimal.
- Uniformed: Itervative deepening search \rightarrow DFS with depth limits $1, 2, ... \rightarrow$ Complete + Optimal.
- Informed: Uniform cost search
- Informed: Best first greedy search
- Informed: A search
- Informed: A star search

into about

how chose state is