CS540 Introduction to Artificial Intelligence Lecture 19

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 3, 2022

Summary

Discussion

Coordination Game

Traveling Salesperson Example Motivation

Local Search

- Local search is about searching through a state space by iteratively improving the cost to find an optimal or near-optimal state.
- The successor states are called the neighbors (sometimes move set).
- The assumption is that similar (nearby) solutions have similar costs.

Hill Climbing (Valley Finding) Description

- Start at a random state.
- Move to the best neighbor state (one of the successors).
- Stop when all neighbors are worse than the current state.
- The idea is similar to gradient descent.

Boolean Satisfiability Example 1

Boolean Satisfiability Example 2

Random Restarts

Discussion

• A simple modification is picking random initial states multiple times and finding the best among the local minima.

First Choice Hill Climbing

- If there are too many neighbors, randomly generate neighbors until a better neighbor is found.
- This method is called first choice hill climbing.

Walk SAT Example

Discussion

- Pick a random unsatisfied clause.
- Select and flip a variable from that clause:
- \bullet With probability p, pick a random variable.
- ② With probability 1 p, pick the variable that maximizes the number of satisfied clauses.
 - Repeat until the solution is found.
 - Walk SAT uses the idea of stochastic hill climbing.

Simulated Annealing Description

- Each time, a random neighbor is generated.
- If the neighbor has a lower cost, move to the neighbor.
- If the neighbor has a higher cost, move to the neighbor with a small probability.
- Stop until bored.
- It is a version of Metropolis-Hastings Algorithm.

Annealing Definition

- The annealing process of heated solids.
- Anneal: to subject (glass or metal) to a process of heating and slow cooling to toughen and reduce brittleness.
- Alloys manage to find a near global minimum energy state when heated and then slowly cooled.

Acceptance Probability

Definition

- The probability of moving to a state with a higher cost should be small.
- Constant: p = 0.1
- 2 Decreases with time: $p = \frac{1}{t}$
- **3** Decreases with time and as the energy difference increases: (-|f(s') f(s)|)

$$p = \exp\left(-\frac{|f(s') - f(s)|}{T(t)}\right)$$

• The algorithm corresponding to the third idea is called simulated annealing. The Temperature function $T\left(t\right)$ should be a decreasing in time t (iteration number).

Temperature Definition

 T represents temperature which decreases over time. For example, the temperature can change arithmetically or geometrically.

$$T\left(t+1
ight) = \max\left\{T\left(t
ight) - 1, 1
ight\}, T\left(0
ight) = \text{ large}$$
 $T\left(t+1
ight) = 0.9T\left(t
ight), T\left(0
ight) = \text{ large}$

- High temperature: almost always accept any s'.
- Low temperature: first choice hill climbing.

Simulated Annealing Example 1 Quiz

Simulated Annealing Example 2 Quiz

Simulated Annealing Performance

- Use hill-climbing first.
- Neighborhood design is the most important.
- In theory, with infinitely slow cooling rate, Simulated Annealing finds global minimum with probability 1.