CS540 Introduction to Artificial Intelligence Lecture 19

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 1, 2022

Summary

Discussion

- Search:
- Uninformed.
- Informed.
- Local Search: Hill Climbing (Valley Finding).
- Local Search: Simulated Annealing.
- Local Search: Genetic Algorithm.
- Adversarial (next time).

Coordination Game

Admin

- There will be around 10 new questions on the final exam. I will post n of them before the exam (next week):
- A: n = 0.
- B: n = 1 if more than 50 percent of you choose B.
- C: n=2 if more than 75 percent of you choose C.
- D : n = 3 if more than 95 percent of you choose D. E : n = 0.
- I will repeat this question a second time. If you fail to coordinate both times, I will not post any of the new questions.

Traveling Salesperson Example

Motivation

- Local search is about searching through a <u>state space</u> by iteratively improving the cost to find an optimal or near-optimal state.
- The successor states are called the neighbors (sometimes move set).
- The assumption is that similar (nearby) solutions have similar costs.

Hill Climbing (Valley Finding) Description

local mh

- Start at a random state.
- Move to the best neighbor state (one of the successors).
- Stop when all neighbors are worse than the current state.
- The idea is similar to gradient descent.

Boolean Satisfiability Example 1

Quiz Successor / neighbor SAT Hip one vanable

• Assume all variables A, B, C, D, E are set to True. How many of the following clauses are satisfied and which one of the variables should be changed to False to maximize the number of clauses satisfied?

Boolean Satisfiability Example 2

• Assume all variables A, B, C, D, E are set to True. Which one of the variables should be changed to False to maximize the

number of clauses satisfied? E: I don't understand.

Random Restarts

Discussion

A simple modification is picking random initial states multiple
 times and finding the best among the local minima.

First Choice Hill Climbing

Discussion

- If there are too many neighbors, randomly generate neighbors until a better neighbor is found.
- This method is called first choice hill climbing.

Walk SAT Example

Discussion

- Pick a random unsatisfied clause.
- Select and flip a variable from that clause:
- With probability p, pick a random variable.
- ② With probability 1 p, pick the variable that maximizes the number of satisfied clauses.
- Repeat until the solution is found.
 - Walk SAT uses the idea of stochastic hill climbing.

Simulated Annealing

Description

- Each time, a random neighbor is generated.
- If the neighbor has a lower cost, move to the neighbor.
- If the neighbor has a higher cost, move to the neighbor with a small probability.
- Stop until bored.
- It is a version of Metropolis-Hastings Algorithm.

Annealing Definition

- The annealing process of heated solids.
- Anneal: to subject (glass or metal) to a process of heating and slow cooling to toughen and reduce brittleness.
- Alloys manage to find a near global minimum energy state when heated and then slowly cooled.

Acceptance Probability

Definition

- The probability of moving to a state with a higher cost should be small.
- Constant: p = 0.1
- ② Decreases with time: $p = \frac{1}{t}$
- Oecreases with time and as the energy difference increases:

$$p = \exp\left(-\frac{|f(s') - f(s)|}{T(t)}\right)$$

• The algorithm corresponding to the third idea is called simulated annealing. The Temperature function $T\left(t\right)$ should be a decreasing in time t (iteration number).

Temperature

Definition

 T represents temperature which decreases over time. For example, the temperature can change arithmetically or geometrically.

$$T(t+1) = \max\{T(t) - 1, 1\}, T(0) = \text{large}$$

 $T(t+1) = 0.9T(t), T(0) = \text{large}$

- High temperature: almost always accept any s'.
- Low temperature: first choice hill climbing.

Simulated Annealing Example 1 Quiz

• Suppose we are minimizing and f(s) = 6, f(s') = 5, T = 4. What is the probability we move from s to s' in the next step? What is the probability we move from s' to s in the next step?

Simulated Annealing Example 2 Quiz

- Suppose we are minimizing and $f(s) = 0, f(s') = \log(5), T = 1$. What is the probability we move from s to s'.
- A:0
- $B: \frac{1}{5}$
- $C: \frac{4}{5}$
- D:1
- E: I don't understand.

Simulated Annealing Performance

- Use hill-climbing first.
- Neighborhood design is the most important.
- In theory, with infinitely slow cooling rate, Simulated Annealing finds global minimum with probability 1.