CS540 Introduction to Artificial Intelligence Lecture 21

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 8, 2022

Lion Game Example

- There are N lions, ordered by size, i=1,2,3,...,N, and a bunny. N takes an integer between 1 and 10 with equal probability (known to all the lions). Each lion i can choose to jump out and eat the slightly smaller lion i-1, or stay hidden, and only lion 1 can eat the bunny. Each lion prefers eating to staying hungry to being eaten.
- What is the probability that the bunny is eaten?
- A: 0, B: $\frac{1}{3}$, C: $\frac{1}{2}$, D: $\frac{2}{3}$, E: 1

Summary

- Search:
- Uninformed.
- Informed.
- Search.
- 4 Adversarial Search: Sequential move games.
- 6 Adversarial Search: Simultaneous move games.

Tic Tac Toe Example Motivation

Nim Game Example

- Ten objects. Pick 1 or 2 each time. Pick the last one to win.
- A: Pick 1.
- B : Pick 2.
- \bullet C, D, E: Don't choose.

Minimax Algorithm Description

• Use DFS on the game tree.

Minimax Example

- For a zero-sum game, the value to the MAX player if MAX plays $x_1 \in \{1, 2, 4\}$ and MIN plays $x_2 \in \{1, 2, 4\}$ is $x_1 \cdot x_2$. What is the value of the game?
- A:1
- B: 2
- C:4
- D:8
- E:16

Minimax Performance

Discussion

• The time and space complexity is the same as DFS. Note that D = d is the maximum depth of the terminal states.

$$T = 1 + b + b^{2} + ... + b^{d}$$

 $S = (b-1) \cdot d$

Non-deterministic Game

- For non-deterministic games in which chance can make a move (dice roll or coin flip), use expected reward or cost instead.
- The algorithm is also called expectiminimax.

Game Tree with Chance Example 1

• Max can pick L or R. If Max picks L, Chance picks L with probability 0.3 and R with probability 0.7. If Chance picks L, Min picks L to get 3, R to get 2, and if Chance picks R, Min gets 7. If Max picks R, Min picks L to get -1 and R to get 2. What is the value of the game?

Game Tree with Chance Example 1 Diagram

Pruning Motivation

- Time complexity is a problem because the computer usually has a limited amount of time to "think" and make a move.
- It is possible to reduce the time complexity by removing the branches that will not lead the current player to win. It is called the Alpha-Beta pruning.

Alpha Beta Pruning Description

- During DFS, keep track of both α and β for each vertex.
- Prune the subtree with $\alpha \geqslant \beta$.

Alpha Beta Example 1 Continued

- For a zero-sum game, the value to the MAX player if MAX plays $x_1 \in \{1, 2, 4\}$ and MIN plays $x_2 \in \{1, 2, 4\}$ is $x_1 \cdot x_2$. Alpha-Beta pruning is used. What is the number of branches (states) that can be pruned if the actions with larger labels are searched first?
- A:0
- B:1
- C:2
- D:3
- E:4

- For a zero-sum game, the value to the MAX player if MAX plays $x_1 \in \{1, 2, 4\}$ and MIN plays $x_2 \in \{1, 2, 4\}$ is $x_1 \cdot x_2$. Alpha-Beta pruning is used. What is the number of branches (states) that can be pruned if the actions with smaller labels are searched first?
- A:0
- B:1
- C:2
- D:3
- E:4

- For a zero-sum game, the value to the MAX player if MAX plays x₁ ∈ {1,2,4} and MIN plays x₂ ∈ {1,2,4} is x₁ ⋅ x₂. Alpha-Beta pruning is used. What is the maximum number of branches (states) that can be pruned if the actions can be searched in any order?
- A: 2
- B:3
- C:4
- D:5
- E:6

Alpha Beta Example 4 Continued

Alpha Beta Performance

- In the best case, the best action of each player is the leftmost child.
- In the worst case, Alpha Beta is the same as minimax.

Static Evaluation Function

- A static board evaluation function is a heuristics to estimate the value of non-terminal states.
- It should reflect the player's chances of winning from that vertex.
- It should be easy to compute from the board configuration.

Linear Evaluation Function Example Definition

- For Chess, an example of an evaluation function can be a linear combination of the following variables.
- Material.
- Mobility.
- King safety.
- 4 Center control.
 - These are called the features of the board.

Iterative Deepening Search

- IDS could be used with SBE.
- In iteration d, the depth is limited to d, and the SBE of the non-terminal vertices are used as their cost or reward.

IDS with SBE Diagram

Non Linear Evaluation Function

- The SBE can be estimated given the features using a neural network.
- The features are constructed using domain knowledge, or a possibly a convolutional neural network.
- The training data are obtained from games between professional players.

- Simulate random games by selecting random moves for both players.
- Exploitation by keeping track of average win rate for each successor from previous searches and picking the successors that lead to more wins.
- Exploration by allowing random choices of unvisited SUCCESSORS.

Monte Carlo Tree Search Diagram Discussion

Alpha GO Example

- MCTS with $> 10^5$ play-outs.
- Convolutional neural network to compute SBE.

Summary

- Adversarial Search:
- Sequential Move Games: Minimax \rightarrow DFS on the game tree.
- ② Sequential Move Games: Alpha-Beta Pruning \rightarrow DFS to keep track α and $\beta \rightarrow$ prune the subtree with $\alpha \Rightarrow \beta$.
- Simultaneous Move Games: Iterated Elimination of Strictly Dominated Strategies (Rationalizability).
- Simultaneous Move Games: Nash Equilibrium.