Nash Equilibrium

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CS540 Introduction to Artificial Intelligence Lecture 22

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 8, 2022

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Traveler's Dilemma

 Two identical antiques are lost. The airline only knows that its value is at most 100 dollars, so the airline asks their owners (travelers) to report its value (non-negative integers, ≥ 2). The airline tells the travelers that they will be paid the minimum of the two reported values, and the traveler who reported a strictly lower value will receive 2 dollars in reward. If you are one of the travelers, what will you report?

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Traveler's Dilemma, Rationalizability

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Summary Discussion

- Adversarial Search:
- $\textbf{ Sequential Move Games: Minimax} \rightarrow \text{DFS on the game tree}.$
- Sequential Move Games: Alpha-Beta Pruning → DFS to keep track α and β → prune the subtree with α ⇒ β.
- Simultaneous Move Games: Iterated Elimination of Strictly Dominated Strategies (Rationalizability).
- Simultaneous Move Games: Nash Equilibrium.

Nash Equilibrium

Fixed Point

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Guess Average Game

• Write down an integer between 0 and 100 that is the closest to two thirds (2/3) of the average of everyone's (including yours) integers.

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Guess Average Game Derivation

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rationalizability

- An action is 1-rationalizable if it is the best response to some action.
- An action is 2-rationalizable if it is the best response to some 1-rationalizable action.
- An action is 3-rationalizable if it is the best response to some 2-rationalizable action.
- An action is rationalizable if it is ∞ -rationalizable.

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rationalizability Example

• Both players are MAX players. Which actions are rationalizable for the ROW player?

_	A	В	С
A	(2,4)	(3,7)	(4,5)
В	(1,2)	(5,4)	(2,3)
С	(4,1)	(2,8)	(5,3)
D	(3,6)	(4,0)	(1,9)

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Best Response Definition

• An action is a best response if it is optimal for the player given the opponents' actions.

$$\begin{aligned} br_{MAX}\left(s_{MIN}\right) &= \operatorname*{argmax}_{s \in S_{MAX}} c\left(s, s_{MIN}\right) \\ br_{MIN}\left(s_{MAX}\right) &= \operatorname*{argmin}_{s \in S_{MIN}} c\left(s_{MAX}, s\right) \end{aligned}$$

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Nash Equilibrium

• A Nash equilibrium is a state in which all actions are best responses.

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Nash Equilibrium Example 1 Quiz

• Find the value of the Nash equilibrium of the following zero-sum game.

—	I		
Ι	-4	-7	-3
Ш	9	1	7
	-6	-1	5

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Nash Equilibrium Example 1 Quiz

• Find the value (of MAX player) of the Nash equilibrium of the following zero-sum game.

_	I		
I	(-4, 4)	(-7,7)	(-3,3)
	(9, -9)	(1,-1)	(7, -7)
	(-6, 6)	(-1, 1)	(5, -5)

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Nash Equilibrium Example 2 _{Quiz}

• Find the value of the Nash equilibrium of the following zero-sum game.

—	I	П	Ш
Ι	1	2	3
11	4	5	6
	7	8	9

• A: 1 , B: 3 , C: 5 , D: 7, E: I don't understand

Nash Equilibrium

Fixed Point

Prisoner's Dilemma

• A simultaneous move, non-zero-sum, and symmetric game is a prisoner's dilemma game if the Nash equilibrium state is strictly worse for both players than another state.

C stands for Cooperate and D stands for Defect (not Confess and Deny). Both players are MAX players. The game is PD if y > x > 1. Here, (D, D) is the only Nash equilibrium and (C, C) is strictly better than (D, D) for both players.

Nash Equilibrium

Fixed Point

Prisoner's Dilemma Derivation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Properties of Nash Equilibrium

- All Nash equilibria are rationalizable.
- No Nash equilibrium contains a strictly dominated action.
- Rationalizable actions (the set of Nash equilibria is a subset of this) can be found be iterated elimination of strictly dominated actions.
- The above statements are not true for weakly dominated actions.

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mixed Strategy Nash Equilibrium

- A mixed strategy is a strategy in which a player randomizes between multiple actions.
- A pure strategy is a strategy in which all actions are played with probabilities either 0 or 1.
- A mixed strategy Nash equilibrium is a Nash equilibrium for the game in which mixed strategies are allowed.

Nash Equilibrium

Fixed Point

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rock Paper Scissors Example

- There are no pure strategy Nash equilibria.
- Playing each action (rock, paper, scissors) with equal probability is a mixed strategy Nash.

Nash Equilibrium

Fixed Point

Rock Paper Scissors Example Derivation

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Battle of the Sexes Example

• Battle of the Sexes (BoS, also called Bach or Stravinsky) is a game that models coordination in which two players have different preferences in which alternative to coordinate on.

_	Bach	Stravinsky
Bach	(x, y)	(0,0)
Stravinsky	(0,0)	(y, x)

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Battle of the Sexes Example 1

• Find all Nash equilibria of the following game.

—	I	
Ι	(3,5)	(0,0)
	(0,0)	(5,3)

Nash Equilibrium

Fixed Point

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Battle of the Sexes Example 1 Derivation 1

_		
Ι	(3,5)	(0,0)
11	(0,0)	(5,3)

Nash Equilibrium

Fixed Point

Nash Theorem

- Every finite game has a Nash equilibrium.
- The Nash equilibria are fixed points of the best response functions.

Nash Equilibrium

Summary Discussion

- Adversarial Search:
- $\textbf{O} Sequential Move Games: Minimax \rightarrow DFS on the game tree.$
- ② Sequential Move Games: Alpha-Beta Pruning → DFS to keep track α and β → prune the subtree with $\alpha \Rightarrow \beta$.
- Simultaneous Move Games: Iterated Elimination of Strictly Dominated Strategies (Rationalizability) → Remove dominated actions for each player → Repeat.
- Simultaneous Move Games: Nash Equilibrium → Compute the best response → Find strategies (pure or mixed) that are mutual best responses.