CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { June 1, } 2022
$$

Two-thirds of the Average Game

Quiz

- Pick an integer between 0 and 100 (including 0 and 100) that is the closest to two-thirds of the average of the numbers other people picked.
- The results from the previous lecture is posted on the $Q 1$ page of the course website.

Homework Due Dates

Admin

- M, P are due on Mondays at midnight, after that you have another one week or so to submit or resubmit: no penalty except if you need to submit a regrade request (no official documentation required).
- Sharing solutions to M2 questions are due on the same day M2: late posts are not accepted.
- Sharing solutions to $X 1$ questions are due the week before the midterm: late posts are not accepted.
- Piazza discussions: preferrably before the due date on Canvas (that's when I update), but late ones are okay too: no need regrade request.

Homework Grades

Admin

- $M, Q: 1$ point each, lowest 2 dropped.
- $D: 0.5$ points for each post: you can do more than 2 during some weeks, by preferrably less than 4.
- P : 8 points each, use project to replace one of them: I do not have to approve the topic.

AND Operator Data

Quiz

- Sample data for AND

x_{1}	x_{2}	y
0	0	0
0	1	0
1	0	0
1	1	1

Learning AND Operator

Quiz

- Which one of the following is AND?
- $A: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-1.5 \geqslant 0\right\}}$
- $B: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-0.5 \geqslant 0\right\}}$
- $C: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}+0.5 \geqslant 0\right\}}$
- $D: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}-1 x_{2}+0.5 \geqslant 0\right\}}$
- E : None of the above

OR Operator Data

Quiz

- Sample data for OR

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	1

Learning OR Operator

Quiz

- Which one of the following is OR?
- $A: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-1.5 \geqslant 0\right\}}$
- $B: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-0.5 \geqslant 0\right\}}$
- $C: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}+0.5 \geqslant 0\right\}}$
- $D: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}-1 x_{2}+0.5 \geqslant 0\right\}}$
- E : None of the above

Learning XOR Operator

Quiz

- Which one of the following is XOR?
- $A: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-1.5 \geqslant 0\right\}}$
- $B: \hat{y}=\mathbb{1}_{\left\{1 x_{1}+1 x_{2}-0.5 \geqslant 0\right\}}$
- $C: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}+0.5 \geqslant 0\right\}}$
- $D: \hat{y}=\mathbb{1}_{\left\{-1 x_{1}-1 x_{2}+0.5 \geqslant 0\right\}}$
- E : None of the above

Learning XOR Operator Network Quiz

- $y=x_{1}$ XOR x_{2} is the same as $y=\left(x_{1}\right.$ OR $\left.x_{2}\right)$ AND (x_{1} NAND $\left.x_{2}\right)$

Single Layer Perceptron

Motivation

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Decision Boundary Diagram

Motivation

Multi-Layer Perceptron

Motivation

- The output of a perceptron can be the input of another.

$$
\begin{aligned}
a & =g\left(w^{T} x+b\right) \\
a^{\prime} & =g\left(w^{\prime T} a+b^{\prime}\right) \\
a^{\prime \prime} & =g\left(w^{\prime \prime} a^{\prime}+b^{\prime \prime}\right) \\
\hat{y} & =\mathbb{1}_{\left\{a^{\prime \prime}>0\right\}}
\end{aligned}
$$

Neural Network Biology

Motivation

- Human brain: $100,000,000,000$ neurons.
- Each neuron receives input from 1,000 others.
- An impulse can either increase or decrease the possibility of nerve pulse firing.
- If sufficiently strong, a nerve pulse is generated.
- The pulse forms the input to other neurons.

Theory of Neural Network
 Motivation

- In theory:
(1) 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy.
(2) 2 Hidden-layer can represent discontinuous functions.
- In practice:
(1) AlexNet: 8 layers.
(2) GoogLeNet: 27 layers (or $22+$ pooling).
(3) ResNet: 152 layers.

Gradient Descent

Motivation

- The derivatives are more difficult to compute.
- The problem is no longer convex. A local minimum is no longer guaranteed to be a global minimum.
- Need to use chain rule between layers called backpropagation.

Backpropagation

Description

- Initialize random weights.
- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Neural Network Demo

Motivation

Two-Layer Neural Network Weights Diagram 1

Motivation

Two-Layer Neural Network Weights Diagram 2

Motivation

Two-Layer Neural Network Weights Diagram 3

Motivation

Gradient Step, Combined

Definition

- Put everything back into the chain rule formula. (Please check for typos!)

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) w_{j}^{(2)} a_{i j}^{(1)}\left(1-a_{i j}^{(1)}\right) x_{i j^{\prime}} \\
\frac{\partial C}{\partial b_{j}^{(1)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) w_{j}^{(2)} a_{i j}^{(1)}\left(1-a_{i j}^{(1)}\right) \\
\frac{\partial C}{\partial w_{j}^{(2)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) a_{i j}^{(1)} \\
\frac{\partial C}{\partial b^{(2)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)
\end{aligned}
$$

Gradient Descent Step

Definition

- The gradient descent step is the same as the one for logistic regression.

$$
\begin{aligned}
& w_{j}^{(2)} \leftarrow w_{j}^{(2)}-\alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j=1,2, \ldots, m^{(1)} \\
& b^{(2)} \leftarrow b^{(2)}-\alpha \frac{\partial C}{\partial b^{(2)}}, \\
& w_{j^{\prime} j}^{(1)} \leftarrow w_{j^{\prime} j}^{(1)}-\alpha \frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}}, j^{\prime}=1,2, \ldots, m, j=1,2, \ldots, m^{(1)} \\
& b_{j}^{(1)} \leftarrow b_{j}^{(1)}-\alpha \frac{\partial C}{\partial b_{j}^{(1)}}, j=1,2, \ldots, m^{(1)}
\end{aligned}
$$

Learning Logical Operators, XOR

Quiz

- What function does the multi-layer LTU perceptron network with $w_{11}^{(1)}=-1, w_{21}^{(1)}=-1, b_{1}^{(1)}=1.5, w_{12}^{(1)}=1, w_{22}^{(1)}=$ $1, b_{2}^{(1)}=-0.5, w_{1}^{(2)}=1, w_{2}^{(2)}=1, b^{(2)}=-1.5$ compute?

x_{1}	x_{2}	y_{A}	y_{B}	y_{C}	y_{D}	y_{E}
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	1	0

Learning Logical Operators, XOR, Diagram

 Quiz| x_{1} | x_{2} | y_{A} | y_{B} | y_{C} | y_{D} | y_{E} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 1 | 1 | 0 | 1 |
| 1 | 0 | 0 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 | 1 | 0 |

Learning Logical Operators, XOR, Answer

Quiz

Three-Layer Neural Network Weights Diagram
 Motivation

