CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { June 1, } 2022
$$

Single Layer Perceptron

Motivation

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Multi-Layer Perceptron

Motivation

- The output of a perceptron can be the input of another.

$$
\begin{aligned}
a & =g\left(w^{T} x+b\right) \\
a^{\prime} & =g\left(w^{\prime T} a+b^{\prime}\right) \\
a^{\prime \prime} & =g\left(w^{\prime \prime} a^{\prime}+b^{\prime \prime}\right) \\
\hat{y} & =\mathbb{1}_{\left\{a^{\prime \prime}>0\right\}}
\end{aligned}
$$

Learning XOR Operator, Part 1

Motivation

- XOR cannot be modeled by a single perceptron.

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

Learning XOR Operator, Part 2

Motivation

- OR, AND, NOT AND can be modeled by perceptrons.
- If the outputs of OR and NOT AND is used as inputs for AND, then the output of the network will be XOR.

Neural Network Biology

Motivation

- Human brain: 100, 000, 000, 000 neurons.
- Each neuron receives input from 1,000 others.
- An impulse can either increase or decrease the possibility of nerve pulse firing.
- If sufficiently strong, a nerve pulse is generated.
- The pulse forms the input to other neurons.

Theory of Neural Network
 Motivation

- In theory:
(1) 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy.
(2) 2 Hidden-layer can represent discontinuous functions.
- In practice:
(1) AlexNet: 8 layers.
(2) GoogLeNet: 27 layers (or $22+$ pooling).
(3) ResNet: 152 layers.

Neural Network Examples

Motivation

- Classification tasks.
- Approximate functions.
- Store functions (after midterm).

Gradient Descent

Motivation

- The derivatives are more difficult to compute.
- The problem is no longer convex. A local minimum is no longer guaranteed to be a global minimum.
- Need to use chain rule between layers called backpropagation.

Backpropagation

Description

- Initialize random weights.
- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Cost Function

Definition

- For simplicity, assume there are only two layers (one hidden layer), and g is the sigmoid function for this lecture.

$$
g^{\prime}(z)=g(z)(1-g(z))
$$

- Let the output in the second layer be a_{i} for instance x_{i}, then cost function is the squared error,

$$
C=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-a_{i}\right)^{2}
$$

Interal Activations

Definition

- Let the output in the first layer be $a_{i j}^{(1)}, j=1,2, \ldots, m^{(1)}$.

$$
\begin{aligned}
a_{i} & =g\left(z_{i}\right) \\
z_{i} & =\sum_{j=1}^{m^{(1)}} a_{i j}^{(1)} w_{j}^{(2)}+b^{(2)}
\end{aligned}
$$

- Let the input in the zeroth layer be $x_{i j}, j=1,2, \ldots, m$.

$$
\begin{aligned}
& a_{i j}^{(1)}=g\left(z_{i j}^{(1)}\right) \\
& z_{i j}^{(1)}=\sum_{j^{\prime}=1}^{m} x_{i j^{\prime}} w_{j^{\prime} j}^{(1)}+b_{j}^{(1)}
\end{aligned}
$$

Notations

Definition

- $a_{i j}^{(I)}$ is the hidden unit activation of instance i in layer I, unit j
- $z_{i j}^{(I)}$ is the linear part of instance i in layer l, unit j
- $w_{j^{\prime} j}^{(I)}$ is the weights between layers $I-1$ and I, from unit j^{\prime} in layer $I-1$ to unit j in layer I.
- $b_{j}^{(I)}$ is the bias for layer $/$ unit j.
- $m^{(I)}$ is the number of units in layer l.
- Superscript / is omitted for the last layer.

Required Gradients

Definition

- The derivatives that are required for the gradient descents are the following.

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}}, j & =1,2, \ldots, m^{(1)}, j^{\prime}=1,2, \ldots, m \\
\frac{\partial C}{\partial b_{j}^{(1)}}, j & =1,2, \ldots, m^{(1)} \\
\frac{\partial C}{\partial w_{j}^{(2)}}, j & =1,2, \ldots, m^{(1)} \\
& \frac{\partial C}{\partial b^{(2)}}
\end{aligned}
$$

Gradients of Second Layer

Definition

- Apply chain rule once to get the gradients for the second layer.

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j}^{(2)}} & =\sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial w_{j}^{(2)}}, j=1,2, \ldots, m^{(1)} \\
\frac{\partial C}{\partial b^{(2)}} & =\sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial b^{(2)}}
\end{aligned}
$$

Gradients of First Layer

Definition

- Chain rule twice says,

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}} & =\sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial a_{i j}^{(1)}} \frac{\partial a_{i j}^{(1)}}{\partial z_{i j}^{(1)}} \frac{\partial z_{i j}^{(1)}}{\partial w_{j^{\prime} j}^{(1)}} \\
j & =1,2, \ldots, m^{(1)}, j^{\prime}=1,2, \ldots, m \\
\frac{\partial C}{\partial b_{j}^{(1)}} & =\sum_{i=1}^{n} \frac{\partial C}{\partial a_{i}} \frac{\partial a_{i}}{\partial z_{i}} \frac{\partial z_{i}}{\partial a_{i j}^{(1)}} \frac{\partial a_{i j}^{(1)}}{\partial z_{i j}^{(1)}} \frac{\partial z_{i j}^{(1)}}{\partial b_{j}^{(1)}} \\
j & =1,2, \ldots, m^{(1)}
\end{aligned}
$$

Derivative of Error

Definition

- Compute the derivative of the error function.

$$
\begin{aligned}
& C=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-a_{i}\right)^{2} \\
& \Rightarrow \frac{\partial C}{\partial a_{i}}=a_{i}-y_{i}
\end{aligned}
$$

Derivative of Interal Outputs, Part 1

Definition

- Compute the derivative of the output in the second layer.

$$
\begin{aligned}
& a_{i}=g\left(z_{i}\right) \\
& \Rightarrow \frac{\partial a_{i}}{\partial z_{i}}=g\left(z_{i}\right)\left(1-g\left(z_{i}\right)\right)=a_{i}\left(1-a_{i}\right) \\
& z_{i}=\sum_{j=1}^{m^{(1)}} a_{i j}^{(1)} w_{j}^{(2)}+b^{(2)} \\
& \Rightarrow \frac{\partial z_{i}}{\partial w_{j}^{(2)}}=a_{i j}^{(1)}, \frac{\partial z_{i}}{\partial b^{(2)}}=1
\end{aligned}
$$

Derivative of Internal Outputs, Part 2

Definition

- Compute the derivative of the output in the first layer.

$$
\begin{aligned}
& a_{i j}^{(1)}=g\left(z_{i j}^{(1)}\right) \\
& \Rightarrow \frac{\partial a_{i j}^{(1)}}{\partial z_{i j}^{(1)}}=g\left(z_{i j}^{(1)}\right)\left(1-g\left(z_{i j}^{(1)}\right)\right)=a_{i j}^{(1)}\left(1-a_{i j}^{(1)}\right) \\
& z_{i j}^{(1)}=\sum_{j^{\prime}=1}^{m} x_{i j}^{\prime} w_{j^{\prime} j}^{(1)}+b_{j}^{(1)} \\
& \Rightarrow \frac{\partial z_{i j}^{(1)}}{\partial w_{j^{\prime} j}^{(1)}}=x_{i j^{\prime}}, \frac{\partial z_{i j}^{(1)}}{\partial b_{j}^{(1)}}=1
\end{aligned}
$$

Derivative of Internal Outputs, Part 3

Definition

- Compute the derivative between the outputs.

$$
\begin{aligned}
z_{i} & =\sum_{j=1}^{m^{(1)}} a_{i j}^{(1)} w_{j}^{(2)}+b^{(2)} \\
& \Rightarrow \frac{\partial z_{i}}{\partial a_{i j}^{(1)}}=w_{j}^{(2)}
\end{aligned}
$$

Gradient Step, Combined

Definition

- Put everything back into the chain rule formula. (Please check for typos!)

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) w_{j}^{(2)} a_{i j}^{(1)}\left(1-a_{i j}^{(1)}\right) x_{i j^{\prime}} \\
\frac{\partial C}{\partial b_{j}^{(1)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) w_{j}^{(2)} a_{i j}^{(1)}\left(1-a_{i j}^{(1)}\right) \\
\frac{\partial C}{\partial w_{j}^{(2)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) a_{i j}^{(1)} \\
\frac{\partial C}{\partial b^{(2)}} & =\sum_{i=1}^{n}\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right)
\end{aligned}
$$

Gradient Descent Step

Definition

- The gradient descent step is the same as the one for logistic regression.

$$
\begin{aligned}
& w_{j}^{(2)} \leftarrow w_{j}^{(2)}-\alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j=1,2, \ldots, m^{(1)} \\
& b^{(2)} \leftarrow b^{(2)}-\alpha \frac{\partial C}{\partial b^{(2)}}, \\
& w_{j^{\prime} j}^{(1)} \leftarrow w_{j^{\prime} j}^{(1)}-\alpha \frac{\partial C}{\partial w_{j^{\prime} j}^{(1)}}, j^{\prime}=1,2, \ldots, m, j=1,2, \ldots, m^{(1)} \\
& b_{j}^{(1)} \leftarrow b_{j}^{(1)}-\alpha \frac{\partial C}{\partial b_{j}^{(1)}}, j=1,2, \ldots, m^{(1)}
\end{aligned}
$$

Backpropogation, Part 1

Algorithm

- Inputs: instances: $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{y_{i}\right\}_{i=1}^{n}$, number of hidden layers L with units $m^{(1)}, m^{(2)}, \ldots, m^{(L-1)}$, with $m^{(0)}=m, m^{(L)}=1$, and activation function g is the sigmoid function.
- Outputs: weights and biases:
$w_{j^{\prime} j}^{(I)}, b_{j}^{(I)}, j^{\prime}=1,2, \ldots, m^{(I-1)}, j=1,2, \ldots, m^{(I)}, I=1,2, \ldots, L$
- Initialize the weights.

$$
w_{j^{\prime} j}^{(I)}, b_{j}^{(I)} \sim \text { Unif }[-1,1]
$$

Backpropagation, Part 2

Algorithm

- Evaluate the activation functions.

$$
\begin{aligned}
& a_{i}=g\left(\sum_{j=1}^{m^{(L-1)}} a_{i j}^{(L-1)} w_{j}^{(L)}+b^{(L)}\right) \\
& a_{i j}^{(I)}=g\left(\sum_{j^{\prime}=1}^{m^{(I-1)}} a_{i j^{\prime}}^{(I-1)} w_{j^{\prime} j}^{(I)}+b_{j}^{(I)}\right), I=1,2, \ldots, L-1 \\
& a_{i j}^{(0)}=x_{i j}
\end{aligned}
$$

Backpropagation, Part 3

Algorithm

- Compute the δ to simplify the expression of the gradient.

$$
\begin{aligned}
\delta_{i}^{(L)} & =\left(a_{i}-y_{i}\right) a_{i}\left(1-a_{i}\right) \\
\delta_{i j}^{(I)} & =\sum_{j^{\prime}=1}^{m^{(I+1)}} \delta_{j^{\prime}}^{(I+1)} w_{j j^{\prime}}^{(I+1)} a_{i j}^{(I)}\left(1-a_{i j}^{(I)}\right), I=1,2, \ldots, L-1
\end{aligned}
$$

- Compute the gradient using the chain rule.

$$
\begin{aligned}
\frac{\partial C}{\partial w_{j^{\prime} j}^{(I)}} & =\sum_{i=1}^{n} \delta_{i j}^{(I)} a_{i j^{\prime}}^{(I-1)}, I=1,2, \ldots, L \\
\frac{\partial C}{\partial b_{j}^{(I)}} & =\sum_{i=1}^{n} \delta_{i j}^{(I)}, I=1,2, \ldots, L
\end{aligned}
$$

Backpropagation, Part 4

Algorithm

- Update the weights and biases using gradient descent.

$$
\begin{aligned}
& \text { For } I=1,2, \ldots, L \\
& w_{j^{\prime} j}^{(I)} \leftarrow w_{j^{\prime} j}^{(I)}-\alpha \frac{\partial C}{\partial w_{j^{\prime} j}^{(I)}}, j^{\prime}=1,2, \ldots, m^{(I-1)}, j=1,2, \ldots, m^{(I)} \\
& b_{j}^{(I)} \leftarrow b_{j}^{(I)}-\alpha \frac{\partial C}{\partial b_{j}^{(I)}}, j=1,2, \ldots, m^{(I)}
\end{aligned}
$$

- Repeat the process until convergent.

$$
\left|C-C^{\text {prev }}\right|<\varepsilon
$$

