Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

CS540 Introduction to Artificial Intelligence Lecture 4

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 1, 2022

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm vs Logistic Regression

• For LTU Perceptrons, *w* is updated for each instance *x_i* sequentially.

$$\mathbf{w} = \mathbf{w} - \alpha \left(\mathbf{a}_i - \mathbf{y}_i \right) \mathbf{x}_i$$

• For Logistic Perceptrons, *w* is updated using the gradient that involves all instances in the training data.

$$w = w - \alpha \sum_{i=1}^{n} (a_i - y_i) x_i$$

Multi-Class Classification

Regularization

Stochastic Gradient Descent Diagram

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stochastic Gradient

 Full gradient descent computes the gradient with respect to all instances.

$$w = w - \alpha \frac{\partial C}{\partial w} = w - \alpha \sum_{i=1}^{n} \frac{\partial C_i}{\partial w}$$

• Stochastic gradient descent repeatedly select a random instance *i* and computes the gradient with respect to that instance.

$$w = w - \alpha \frac{\partial C_i}{\partial w}$$

• Usually, random sampling is done without replacement by shuffling the training set instead of sampling with replacement, so that all instances are included in each iteration (called an epoch).

Multi-Class Classification

Regularization

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Choice of Learning Rate

- Changing the learning rate α as the weights get closer to the optimal weights could speed up convergence.
- Popular choices of learning rate include $\frac{\alpha}{\sqrt{t}}$ and $\frac{\alpha}{t}$, where t is the current number of iterations.
- Other methods of choosing step size include using the second derivative (Hessian) information, such as Newton's method and BFGS, or using information about the gradient in previous steps, such as adaptive gradient methods like AdaGrad and Adam.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Multi-Class Classification

- When there are K categories to classify, the labels can take K different values, $y_i \in \{1, 2, ..., K\}$.
- Logistic regression and neural network cannot be directly applied to these problems.

Multi-Class Classification

Regularization

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Method 1, One VS All Discussion

- Train a binary classification model with labels y'_i = 1_{{yi=j} for each j = 1, 2, ..., K.
- Given a new test instance x_i , evaluate the activation function $a_i^{(j)}$ from model j.

$$\hat{y}_i = \operatorname*{argmax}_j a_i^{(j)}$$

 One problem is that the scale of a_i^(j) may be different for different j.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Method 2, One VS One

- Train a binary classification model for each of the $\frac{K(K-1)}{2}$ pairs of labels.
- Given a new test instance x_i , apply all $\frac{K(K-1)}{2}$ models and output the class that receives the largest number of votes. $\hat{y}_i = \operatorname*{argmax}_{j} \sum_{i' \neq i} \hat{y}_i^{(j \text{ vs } j')}$
- One problem is that it is not clear what to do if multiple classes receive the same number of votes.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

One Hot Encoding

- If y is not binary, use one-hot encoding for y.
- For example, if y has three categories, then $y_i \in \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method 3, Softmax Function

• For both logistic regression and neural network, the last layer will have *K* units, *a_{ij}*, for *j* = 1, 2, ..., *K*, and the softmax function is used instead of the sigmoid function.

$$a_{ij} = g\left(w_{j}^{T}x_{i} + b_{j}\right) = \frac{\exp\left(-w_{j}^{T}x_{i} - b_{j}\right)}{\sum_{j'=1}^{K}\exp\left(-w_{j'}^{T}x_{i} - b_{j'}\right)}, j = 1, 2, ..., K$$

Multi-Class Classification

Regularization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Softmax Derivatives

- Cross entropy loss is also commonly used with a softmax activation function.
- The gradient of cross-entropy loss with respect to a_{ij} , component *j* of the output layer activation for instance *i* has the same form as the one for logistic regression.

$$\frac{\partial C}{\partial a_{ij}} = a_{ij} - y_{ij} \Rightarrow \nabla_{a_i} C = a_i - y_i$$

• The gradient with respect to the weights can be found using the chain rule.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Softmax Diagram

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Weight Count

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weight Count 2

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weight Count 3

Multi-Class Classification

Regularization •00000000000

Generalization Error Diagram

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Multi-Class Classification

Regularization 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method 1, Validation Set

- Set aside a subset of the training set as the validation set.
- During training, the cost (or accuracy) on the training set will always be decreasing until it hits 0.
- Train the network until the cost (or accuracy) on the validation set begins to increase.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Validation Set Diagram

Discussion

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method 2, Drop Out Discussion

- At each hidden layer, a random set of units from that layer is set to 0.
- For example, each unit is retained with probability p = 0.5. During the test, the activations are reduced by p = 0.5 (or 50 percent).
- The intuition is that if a hidden unit works well with different combinations of other units, it does not rely on other units and it is likely to be individually useful.

Multi-Class Classification

Regularization

Drop Out Diagram

Regularization

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Method 3, L1 and L2 Regularization

- The idea is to include an additional cost for non-zero weights.
- The models are simpler if many weights are zero.
- For example, if logistic regression has only a few non-zero weights, it means only a few features are relevant, so only these features are used for prediction.

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method 3, L1 Regularization

• For *L*1 regularization, add the 1-norm of the weights to the cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_1$$
$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} |w_i| + |b| \right)$$

• Linear regression with *L*1 regularization is called LASSO (least absolute shrinkage and selection operator).

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Method 3, L2 Regularization

• For L2 regularization, add the 2-norm of the weights to the cost.

$$C = \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left\| \begin{bmatrix} w \\ b \end{bmatrix} \right\|_2^2$$
$$= \sum_{i=1}^{n} (a_i - y_i)^2 + \lambda \left(\sum_{i=1}^{m} w_i^2 + b^2 \right)$$

Multi-Class Classification

Regularization

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Method 4, Data Augmentation

• More training data can be created from the existing ones, for example, by translating or rotating the handwritten digits.

Multi-Class Classification

Regularization 00000000000000

Pixel Intensity Features

Multi-Class Classification

Regularization 00000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Recognizing Handwritten Digits Demo

Multi-Class Classification

Regularization

Questions about P1

Admin

