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Perceptron Algorithm vs Logistic Regression

Motivation

@ For LTU Perceptrons, w is updated for each instance x;
sequentially. —
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e For Logistic Perceptrons, w is updated using the gradient that
involves all instances in the training data. 7%
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Stochastic Gradient Descent Diagram
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Stochastic Gradient

e Full gradient descent computes the gradient with respect to

all instances.
n
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e Stochastic gradient descent repeatedly select a random
instance / and computes the gradient with respect to that
Instance.
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e Usually, random sampling is done without replacement by
Yshufflir@the training set instead of sampling with ‘(
replacement, so that all instances are included in each
iteration (called an epoch).
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Choice of Learning Rate

Discussion

@ Changing the learning rate o as the weights get closer to the

optimal weights could speed up convergence.
: : : v 8! ,

@ Popular choices of learning rate include W and e where t is
the current number of iterations.

@ Other methods of choosing step size include using the second 7
derivative (Hessian) information, such as Newton's method
and BFGS, or using information about the gradient in previous
steps, such as adaptive gradient methods like AdaGrad and j

Adam.




Stochastic Gradient Multi-Class Classification Regularization
Q000 9000000000 Q000000000000

Multi-Class Classification

Motivation
o
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@ When there are K categories to classify, the labels can take K
different values, y; € {1,2, ..., K}.

)

e Logistic regression and neural network cannot be directly
applied to these problems.
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Method 1, One VS All

Discussion

O VS wt
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e Train a binary classification model with labels y; = 1
each j =1,2,..., K.

<=
@ Given a new test instance x;, evaluate the activation function

af.j) from model j.

yi=j} for

yi = argmax agj)
j e
@ One problem is that the scale of a,w may be different for

different .
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Method 2, One VS One

Discussion

. K(K-1
e Train a binary classification model for each of the ( )
pairs of labels.
K(K-1
e Given a new test instance x;, apply all ( ) models and

output the class that receives the largest number of votes.

- ~(jvs
y,‘ — argmax Z y,(J J )

I jr#j

@ One problem is that it is not clear what to do if multiple
classes receive the same number of votes.
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Multi-Class Classification
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One Hot Encoding

Discussion
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e If y is not binary, use one-hot encoding for y.

e For example, if y has three categories, then
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Regularization
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Method 3, Softmax Function Shr~|

Discussion

e For both logistic regression and neural network, the last | L@
will have K units, ajj, for j = 1,2, ..., K, and the softmax
function is used instead of the sigmoid function.

ope et
. exp (—ijx; — bj) | -
a,-jzg(wjx,-+bj)= % J=12..,K l
T }
exp (—w-, Xj — bjr) g ‘
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Softmax Derivatives

Discussion

@ Cross entropy loss is also commonly used with a softmax
activation function.

@ The gradient of cross-entropy loss with respect to aj;,
component j of the output layer activation for instance / has
the same form as the one for logistic regression.
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=aij_}’ij=>va,-C=ai_yf'

@ The gradient with respect to the weights can be found using
the chain rule.
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Softmax Diagram

Discussion
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Weight Count
Quiz
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@ How many weights and biases are there in a)(fully connected)
three-layer heural network with g Input units, iIdden units in

the first hidden layer, 2 hidden units in the second hidden
layer, and 3 output units?
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Weight Count 2
Quiz

Regularization

e How many weights (not including bias) are there in a (fully
connected) two-layer neural network with 10 input units, 5
hidden units, and 10 output units.

e A:50

e B:55
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Weight Count 3
Quiz

R4

e How many biases are there in a (fully connected) two-layer
neural network with 10 input units, 5 hidden units, and 10
output units.
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Generalization Error Diagram

Motivation
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Method 1, Validation Set

Discussion /"]
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e Set aside a subset of the training set as the validation sét.
@ During training, the cost (or accuracy) on the training set will
always be decreasing until it hits 0.

@ Train the network until the cost (or accuracy) on the
validation set begins to increase.
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Validation Set Diagram

Discussion
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Method 2, Drop Out

Discussion

@ At each hidden layer, a random set of units from that layer is
set to 0.

e For example, each unit is retained with probability p = 0.5.
During the test, the activations are reduced by p = 0.5 (or 50
percent).

@ The intuition is that if a hidden unit works well with different
combinations of other units, it does not rely on other units
and it is likely to be individually useful.
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Drop Out Diagram

Discussion
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Method 3, L1 and L2 Regularlzatlon

Discussion
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@ The idea is to include an additional cost for non-zero weights.

@ The models are simpler if many weights are zero.

e For example, if logistic regression has only a few non-zero
weights, it meansonly a few features are relevant, so only
these features are used for prediction.
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Method 3, L1 Regularization

Discussion

e For L1 regularization, add the 1-norm of the weights to the

cost.
n , W
C= Z(ai—}’i) +)\‘Hb]
=1 1|
= Z (ai — yi)® + A (Z lw;| + |b|)
i=1 i=1

o Linear regression with L1 regularization iscalled LASSO (least
absolute shrinkage and selection operator).
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Method 3., L2 Regularization

Discussion

@ For L2 regularization, add the 2-norm of the weights to the

cost.
- 2
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C—Z(a, yi)© + A [b]
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Method 4, Data Augmentation

Discussion

e More training data can be created from the existing ones, for
example, by translating or rotating the handwritten digits.
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Pixel Intensity Features

Discussion
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Recognizing Handwritten Digits Demo

Discussion
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Questions about P1
Admin

- H/At/ = S }o/,(‘
@ Cost function? Any is okay.
_G—

e Learning rate? Try things. NES

° STopping criterion? Discuss on Piazza (cost, gradient, max
iterations). (C @ <logo

e Stochastic vs regular gradient descent? Either.
. . 3— 1"";/\
Regularization? If you want.

N
- — . A"Jt.}‘/\'c
@ Use test set to train? NO.

p—
e Other questions?
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