CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 6, 2022

Guess the Percentage

21

- Guess what percentage of the students (who are here) started P1?
- *A* : 0 to 20 percent.
- *B* : 20 to 40 percent.
- *C* : 40 to 60 percent.
- D:)60 to 80 percent.
 - E : 80 to 100 percent.

Room: CS540E

The Percentage

(22

- Did you start *P*1?
- A:
- B : Yes.

62%

- C:
- D : No.
- E:

Guess the Percentage

23

- Guess what percentage of the students (who are here) submitted P1?
- A: 0 to 20 percent.
- B: 20 to 40 percent.
- *C* : 40 to 60 percent.
- *D* : 60 to 80 percent.
- *E* : 80 to 100 percent.

Sharing Solutions Admin

- Use LaTeX (Word, Maple, MyScript etc).
 - $sqrt((a_1^2) / (2 pi))$ is difficult to read compared to $\sqrt{\frac{a_1^2}{2\pi}}$.
- Mandwritten on tablet or on paper and photo or scan (Office Lens).
- Other suggestions?
- Remember to make it a public Piazza Note (not a Question).
- I will either "good note" the post or leave a comment: if I leave a comment (please update your answers, reply to my comment, and remember to make the reply "unresolved" so I can see).

Shared Solution List and Feedback Admin

- The shared solutions are listed in the Main post on Piazza.
- Thank you for the feedback! I posted the responses to those in the Feedback post on Piazza.
- Question: can you see the labels in the 3D diagrams?
- A: Yes.
 B: Cannot see label.
 C: Cannot see anything.

Maximum Margin Diagram Motivation

CTU

Sun

Anick line

Nacaptron

x x x margin

margin

SVM Weights Quiz

• Find the weights w_1, w_2 for the SVM classifier

$$\mathbb{1}_{\{w_1x_{i1}+w_2x_{i2}+1\geqslant 0\}}$$
 given the training data $x_1=\begin{bmatrix}0\\0\end{bmatrix}$ and

$$x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with $y_1 = 1, y_2 = 0$.

- $A: w_1 = 0, w_2 = -2$
- $B: w_1 = -2, w_2 = 0$
- $C: w_1 = -1, w_2 = -1$ $D: w_1 = -2, w_2 = -2$

SVM Weights Diagram Quiz

SVM Weights

- Fall 2005 Final Q15 and Fall 2006 Final Q15
- Find the weights w_1, w_2 for the SVM classifier $\mathbb{1}_{\{w_1x_{i1}+w_2x_{i2}+1\geqslant 0\}}$ given the training data

$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 with $y_1 = 1, y_2 = y_3 = 0$.

- $A: w_1 = -1.5, w_2 = -1.5$
- $B: w_1 = -2, w_2 = -1.5$
- $C: w_1 = -1.5, w_2 = -2$
- $v_1 = -2, w_2 = -2$
 - $E: w_1 = -4, w_2 = -4$

Quiz $w^7x + b + 1 = 6$ $w^7x + b = 0$ $w^7($

$$2 \lambda w^{7}w = 2$$

$$\lambda = \frac{1}{w^{7}w}$$

$$= \frac{1}{||w||^{2}}$$

WT(x - 1w) + b+1=0

W (x + + +) + 6 - 1=0

Constrained Optimization Diagram

Hard Margin SVM.

osllon mistike Le Here is a Gost (loss)

Constrained Optimization Derivation

Definition

Soft Margin Diagram

Soft Margin Derivation

SVM Formulations

Definition

• Hard margin:

$$\min_{w} \frac{1}{2} w^{T} w$$
 such that $(2y_{i} - 1) (w^{T} x_{i} + b) \ge 1, i = 1, 2, ..., n$

Soft margin:

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

Soft Margin

• Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the margin constraint?

Soft Margin 2

Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} -4 \\ -5 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the margin constraint?

- A: −12
- B : −10

- D: 10
- E:12

$$-1\left(-14+3\right)\leq 1-\tilde{I}_{i}$$

Subgradient Descent

Definition

$$w = w - \frac{\partial C}{\partial w}$$

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1)(w^Tx_i + b) = 0$.
- Subgradient can be used instead of a gradient.

Subgradient 1

- Which ones are subderivatives of $\max\{x,0\}$ at x=0?
- A: −1
- B: -0.5
- C:0
- D: 0.5
- E:1

MGX [D, X)

Subgradient 2

(XZ)

27

- Which ones are subderivatives of |x| at x = 0?
- A: −1
- B: -0.5
- C:0
- D: 0.5
- E:1

Subgradient Descent Step

Definition

 One possible set of subgradients with respect to w and b are the following.

$$\partial_{w} C \ni \lambda w - \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$

$$\partial_{b} C \ni - \sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$

 The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Regularization Parameter

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

Kernel Trick 1D Diagram

Motivation

bad 6:50

Kernelized SVM

Definition

- With a feature map φ , the SVM can be trained on new data points $\{(\varphi(x_1), y_1), (\varphi(x_2), y_2), ..., (\varphi(x_n), y_n)\}.$
- The weights w correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i = \mathbb{1}_{\{w^T \varphi(x_i) \geq 0\}}$$

Kernel Trick for XOR

• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the following training set?

	,		,)					
<i>x</i> ₁	<i>x</i> ₂	y		Xi	X	X	4		
0	0	0		0	0	9	5		
0	1	1		0	0	1	1		
1	0	1		1	0	0	1		
1	1	0	.	i	52	1	١ ١		
W.									
	7-1		4		b 4 = b	4 3	= 4		

Support Vector Machines

Kernel Trick for XOR

• SVM with kernel $\varphi(x) = (x_1, x_1x_2, x_2)$ can correctly classify the following training set.

<i>x</i> ₂	y	X3
0	0	6
1	1	0
0	1	0
1	0	(
	0	0 0 1 1 0 1

A : True.

B : False.

Kernel Matrix Definition

The feature map is usually represented by a n × n matrix K
called the Gram matrix (or kernel matrix).

$$K_{ii'} = \varphi(x_i)^T \varphi(x_{i'})$$

Examples of Kernel Matrix

Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)^2$. It can be factored to have the following feature representations.

$$\varphi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1 x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)$$

Examples of Kernel Matrix Derivation Definition

Popular Kernels

Discussion

- Other popular kernels include the following.
- **1** Linear kernel: $K_{ii'} = x_i^T x_{i'}$

- 2 Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- Radial Basis Function (Gaussian) kernel:

$$K_{ii'} = \exp\left(-\frac{1}{\sigma^2} \left(x_i - x_{i'}\right)^T \left(x_i - x_{i'}\right)\right)$$

 Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Matrix

• What is the feature vector $\varphi(x)$ induced by the kernel

Kernel Matrix Math

Kernel Matrix 2

• What is the feature vector $\varphi(x)$ induced by the kernel

$$K_{ii'} \neq 4 \exp(x_i + x_{i'}) + 2x_i x_{i'}?$$

- $A: (4 \exp(x), 2\sqrt{x})$
- $B: (2 \exp(x), \sqrt{2}\sqrt{x})$
- $C: (4 \exp(x), 2x)$
- $D: (2 \exp(x), \sqrt{2}x)$
- \bullet E: None of the above

$$(2e^{x_i}, \sqrt{2}x_i)$$
 (ze^{x_i})

Kernel Matrix Math 2 Quiz