Random Forest

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 6, 2022

 Random Forest 000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hat Game

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
- A: 1... B: 2... C: 3... D: 4... E: 5

Random Forest 000 Nearest Neighbor

Hat Game Diagram

Discussion

Random Forest

Nearest Neighbor

Axes Aligned Decision Boundary

Motivation

Random Forest 000 Nearest Neighbor

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Decision Tree

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Binary Entropy Definition

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0, 1\}$, suppose p_0 fraction of labels are 0 and $1 p_0 = p_1$ fraction of the training set labels are 1, the entropy is:

$$H(Y) = p_0 \log_2 \left(\frac{1}{p_0}\right) + p_1 \log_2 \left(\frac{1}{p_1}\right)$$
$$= -p_0 \log_2 (p_0) - p_1 \log_2 (p_1)$$

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Entropy Definition

 If there are K classes and p_y fraction of the training set labels are in class y, with y ∈ {1, 2, ..., K}, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2\left(\frac{1}{p_y}\right)$$
$$= -\sum_{y=1}^{K} p_y \log_2(p_y)$$

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Entropy Quiz

 Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case, he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What is the entropy of Harry's location?

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Entropy Math

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Entropy 2 _{Quiz}

- A bag contains a red ball, a green ball, a blue ball, and a black ball. Randomly draw a ball from the bag with equal probability. What is the entropy of the outcome?
- A : 1
- $B: \log_2(3)$
- C : 1.5
- D : 2
- E:4

Random Forest

Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conditional Entropy

Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_x as the fraction of the instances that are x, and p_{y|x} as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$
$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X = x)$$

Random Forest

Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Aside: Cross Entropy Definition

Cross entropy measures the difference between two distributions.

$$H(Y,X) = -\sum_{z=1}^{K} p_{Y=z} \log_2 \left(p_{X=z} \right)$$

 It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$H(Y_i, A_i) = -y_i \log (a_i) - (1 - y_i) \log (1 - a_i)$$

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Information Gain

• The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$

• The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Random Forest 000 Nearest Neighbor

Splitting Discrete Features Definition

• The most informative feature is the one with the largest information gain.

 $\operatorname*{argmax}_{j} I(Y|X_{j})$

• Splitting means dividing the training set into K_{X_j} subsets. $\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_j}\}$

Random Forest 000 Nearest Neighbor

Splitting Continuous Variables Diagram

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ID3 Algorithm (Iterative Dichotomiser 3) Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Random Forest

Nearest Neighbor

Pruning Diagram

Random Forest

Nearest Neighbor

Bagging Diagram

Random Forest

Nearest Neighbor

Boosting Diagram

Random Forest

Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K Nearest Neighbor

- Given a new instance, find the *K* instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the *K* instances.

Random Forest

Nearest Neighbor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Distance Function

• Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x'_j)^2}$$

• An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left|x_j - x'_j\right|$$

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Manhattan Distance Diagram

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 Nearest Neighbor

 Find the 1 Nearest Neighbor label for ³
 ⁶
 ³
 using Manhattan
 distance.

<i>x</i> ₁	1	1	3	5	2
<i>x</i> ₂	1	7	3	4	5
y	0	1	1	0	0

- A : 0
- *B* : 1

Random Forest

Nearest Neighbor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

3 Nearest Neighbor

 Find the 3 Nearest Neighbor label for ³
 ³

<i>x</i> ₁	1	1	3	5	2
<i>x</i> ₂	1	7	3	4	5
y	0	1	1	0	0

- A : 0
- *B* : 1

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K Fold Cross Validation

- Partition the training set into K groups.
- Pick one group as the validation set.
- Train the model on the remaining training set.
- Repeat the process for each of the K groups.
- Compare accuracy (or cost) for models with different hyperparameters and select the best one.

Random Forest 000 Nearest Neighbor

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

5 Fold Cross Validation Example

Discussion

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Leave One Out Cross Validation

 If K = n, each time exactly one training instance is left out as the validation set. This special case is called Leave One Out Cross Validation (LOOCV).

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cross Validation

• Given the following training data. What is the 2 fold cross-validation accuracy if 1 nearest neighbor classifier with Manhattan distance is used? The first fold is the first five data points.

x	1	1	2	2	3	3	4	4	5	5
y	1	2	3	3	2	2	3	3	2	1

Random Forest 000 Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cross Validation 2

• Given the following training data. What is the 10 fold cross-validation (LOOCV) accuracy if 1 nearest neighbor classifier with Manhattan distance is used?

x	1	1	2	2	3	3	4	4	5	5
y	1	2	3	3	2	2	3	3	2	1

• A : 20 percent, B: 40, C: 60, D: 80, E: 100

Random Forest

Nearest Neighbor

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Lecture Next Week

- The lecture next week is cancelled.
- The make up lecture will be held Wednesday June 22, the quiz questions will not be graded (everyone gets 1 point), mainly more examples plus optional topics (HMM and RNN).