CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { June 6, } 2022
$$

Hat Game

Quiz

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Everyone said no.
- Dad asked again: do you know the color of your hat?
- Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
- A: 1... B: 2... C: 3... D: 4... E: 5

Hat Game Diagram

Discussion

Axes Aligned Decision Boundary

Motivation

Decision Tree

Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy

Definition

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_{i} \in\{0,1\}$, suppose p_{0} fraction of labels are 0 and $1-p_{0}=p_{1}$ fraction of the training set labels are 1 , the entropy is:

$$
\begin{aligned}
H(Y) & =p_{0} \log _{2}\left(\frac{1}{p_{0}}\right)+p_{1} \log _{2}\left(\frac{1}{p_{1}}\right) \\
& =-p_{0} \log _{2}\left(p_{0}\right)-p_{1} \log _{2}\left(p_{1}\right)
\end{aligned}
$$

Entropy

Definition

- If there are K classes and p_{y} fraction of the training set labels are in class y, with $y \in\{1,2, \ldots, K\}$, the entropy is:

$$
\begin{aligned}
H(Y) & =\sum_{y=1}^{K} p_{y} \log _{2}\left(\frac{1}{p_{y}}\right) \\
& =-\sum_{y=1}^{K} p_{y} \log _{2}\left(p_{y}\right)
\end{aligned}
$$

Entropy

Quiz

- Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case, he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What is the entropy of Harry's location?

Entropy Math

Entropy 2

Quiz

- A bag contains a red ball, a green ball, a blue ball, and a black ball. Randomly draw a ball from the bag with equal probability. What is the entropy of the outcome?
- A: 1
- $B: \log _{2}(3)$
- C: 1.5
- $D: 2$
- $E: 4$

Conditional Entropy

Definition

- Conditional entropy is the entropy of the conditional distribution. Let K_{X} be the possible values of a feature X and K_{Y} be the possible labels Y. Define p_{X} as the fraction of the instances that are x, and $p_{\left.y\right|_{x}}$ as the fraction of the labels that are y among the ones with instance x.

$$
\begin{array}{r}
H(Y \mid X=x)=-\sum_{y=1}^{K_{Y}} p_{y \mid x} \log _{2}\left(p_{y \mid x}\right) \\
H(Y \mid X)=\sum_{x=1}^{K_{X}} p_{x} H(Y \mid X=x)
\end{array}
$$

Aside: Cross Entropy

Definition

- Cross entropy measures the difference between two distributions.

$$
H(Y, X)=-\sum_{z=1}^{K} p_{Y=z} \log _{2}\left(p_{X=z}\right)
$$

- It is used in logistic regression to measure the difference between actual label Y_{i} and the predicted label A_{i} for instance i, and at the same time, to make the cost convex.

$$
H\left(Y_{i}, A_{i}\right)=-y_{i} \log \left(a_{i}\right)-\left(1-y_{i}\right) \log \left(1-a_{i}\right)
$$

Information Gain

Definition

- The information gain is defined as the difference between the entropy and the conditional entropy.

$$
I(Y \mid X)=H(Y)-H(Y \mid X)
$$

- The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features

Definition

- The most informative feature is the one with the largest information gain.

$$
\underset{j}{\operatorname{argmax}} I\left(Y \mid X_{j}\right)
$$

- Splitting means dividing the training set into $K_{x_{j}}$ subsets.

$$
\left\{\left(x_{i}, y_{i}\right): x_{i j}=1\right\},\left\{\left(x_{i}, y_{i}\right): x_{i j}=2\right\}, \ldots,\left\{\left(x_{i}, y_{i}\right): x_{i j}=K_{x_{j}}\right\}
$$

Splitting Continuous Variables Diagram

Definition

ID3 Algorithm (Iterative Dichotomiser 3)
 Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Pruning Diagram

Discussion

Bagging Diagram

Discussion

Boosting Diagram

Discussion

K Nearest Neighbor

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

- Many distance functions can be used in place of the Euclidean distance.

$$
\rho\left(x, x^{\prime}\right)=\left\|x-x^{\prime}\right\|_{2}=\sqrt{\sum_{j=1}^{m}\left(x_{j}-x_{j}^{\prime}\right)^{2}}
$$

- An example is Manhattan distance.

$$
\rho\left(x, x^{\prime}\right)=\sum_{j=1}^{m}\left|x_{j}-x_{j}^{\prime}\right|
$$

Manhattan Distance Diagram

Definition

1 Nearest Neighbor

Quiz

- Find the 1 Nearest Neighbor label for $\left[\begin{array}{l}3 \\ 6\end{array}\right]$ using Manhattan distance.

x_{1}	1	1	3	5	2
x_{2}	1	7	3	4	5
y	0	1	1	0	0

- A: 0
- $B: 1$

3 Nearest Neighbor

Quiz

- Find the 3 Nearest Neighbor label for $\left[\begin{array}{l}3 \\ 3\end{array}\right]$ using Manhattan distance.

x_{1}	1	1	3	5	2
x_{2}	1	7	3	4	5
y	0	1	1	0	0

- A: 0
- $B: 1$

K Fold Cross Validation

Discussion

- Partition the training set into K groups.
- Pick one group as the validation set.
- Train the model on the remaining training set.
- Repeat the process for each of the K groups.
- Compare accuracy (or cost) for models with different hyperparameters and select the best one.

5 Fold Cross Validation Example

Discussion

Leave One Out Cross Validation

Discussion

- If $K=n$, each time exactly one training instance is left out as the validation set. This special case is called Leave One Out Cross Validation (LOOCV).

Cross Validation

Quiz

- Given the following training data. What is the 2 fold cross-validation accuracy if 1 nearest neighbor classifier with Manhattan distance is used? The first fold is the first five data points.

x	1	1	2	2	3	3	4	4	5	5
y	1	2	3	3	2	2	3	3	2	1

Cross Validation 2

Quiz

- Given the following training data. What is the 10 fold cross-validation (LOOCV) accuracy if 1 nearest neighbor classifier with Manhattan distance is used?

x	1	1	2	2	3	3	4	4	5	5
y	1	2	3	3	2	2	3	3	2	1

- $A: 20$ percent, B: 40, C: 60, D: 80, E: 100

Lecture Next Week

Admin

- The lecture next week is cancelled.
- The make up lecture will be held Wednesday June 22, the quiz questions will not be graded (everyone gets 1 point), mainly more examples plus optional topics (HMM and RNN).

