CS540 Introduction to Artificial Intelligence

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 6, 2022

Hat Game

Hat Game Diagram

Discussion

Axes Aligned Decision Boundary Motivation

Decision Tree Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Binary Entropy Definition

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0,1\}$, suppose p_0 fraction of labels are 0 and $1-p_0=p_1$ fraction of the training set labels are 1, the entropy is:

$$H(Y) = p_0 \log_2 \left(\frac{1}{p_0}\right) + p_1 \log_2 \left(\frac{1}{p_1}\right)$$

= $-p_0 \log_2 (p_0) - p_1 \log_2 (p_1)$

Entropy Definition

• If there are K classes and p_y fraction of the training set labels are in class y, with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2 \left(\frac{1}{p_y}\right)$$
$$= -\sum_{y=1}^{K} p_y \log_2 (p_y)$$

Entropy Quiz

Entropy Math Quiz

Entropy 2

Conditional Entropy

Definition

• Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_X as the fraction of the instances that are x, and $p_{y|X}$ as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2 (p_{y|x})$$

$$H(Y|X) = \sum_{y=1}^{K_X} p_x H(Y|X = x)$$

Aside: Cross Entropy

 Cross entropy measures the difference between two distributions.

$$H(Y, X) = -\sum_{z=1}^{K} p_{Y=z} \log_2 (p_{X=z})$$

 It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$H(Y_i, A_i) = -y_i \log(a_i) - (1 - y_i) \log(1 - a_i)$$

Information Gain

• The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$

• The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features Definition

• The most informative feature is the one with the largest information gain.

$$\operatorname*{argmax}_{i}I\left(Y|X_{j}\right)$$

• Splitting means dividing the training set into K_{X_i} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_j}\}$$

Splitting Continuous Variables Diagram Definition

ID3 Algorithm (Iterative Dichotomiser 3) Description

Pruning Diagram

Discussion

Boosting Diagram

Discussion

Nearest Neighbor

K Nearest Neighbor

- Given a new instance, find the *K* instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the *K* instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x_j')^2}$$

• An example is Manhattan distance.

$$\rho\left(x, x'\right) = \sum_{j=1}^{m} \left| x_j - x'_j \right|$$

Manhattan Distance Diagram Definition

1 Nearest Neighbor Quiz

Discussion

5 Fold Cross Validation Example Discussion

Leave One Out Cross Validation

Lecture Next Week Admin