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Discriminative Model vs Generative Model

Motivation
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Generative Models

Motivation A
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@ In probability termé, discriminative models are estimating
P{Y|X}, the conditional distribution. For example,
ai ~P{y; =1|x;} and 1 — a; = P{y; = 0|x;}.

e Generative models are estimating P{Y, X}, the joint
distribution.

e Bayes rule is used to perform classification tasks.
P{Y,X} P{X|Y}P{Y}

PYIXI =Xy T Px)
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Joint Distribution

Motivation

@ The joint distribution of X; and X; provides the probability of
Xj = x; and Xj; = xj» occur at the same time.

P{Xj = xj, Xy = x;}

e The marginal distribution of X; can be found by summing
over all possible values of Xj.

P{X;=x}= ) P{X =x,X =x}

XEXJ;;
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Conditional Distribution

Motivation

@ Suppose the joint distribution is given.
P{X; = x;, Xy = x}

o The conditional distribution of X; given Xj; = x; is ratio
between the joint distribution and the marginal distribution.

P{X) = x, Xy = x7}
P{Xr = x4

P{X; =Xy = x7} =
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Bayes Rule Example 1
Quiz

@ Two documents A and B. Suppose A contains 1 " Groot” and
O other words, and B contains 8 " Groot” and 2 other words.

2
One document is taken out A with probably 3 and B with

1
probably 3’ and one word is picked out at random with equal

probabilities. The word is " Groot”. What is the probability

that the document i |s A?  pfc A p'}’ A aad ¢Y
%’ j

P~ a\’b% M\Qg
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Bayes Rule Example 1 Distribution
Quiz
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Bayes Rule Example 2
Quiz

@ Two documents A and B. Suppose A contains 1 " Groot” and
9 other words, and B contains 8 " Groot” and 2 other words.
One document is taken out at random (with equal
probability), and one word is picked out at random (all words
with equal probability). The word is " Groot”. What is the
probability that the document is A?

1 1 2 9

e A: 3" B: 20 C: z D: 0’ E: | don't understand
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Bayesian Network

Definition

e A Bayesian network is a directed acyclic graph (DAG) and a
set of conditional probability distributions.

o Each vertex represents a feature X;.

e Each edge from X; to X/ represents that X; directly influences

e No edge between X; and X implies independence or
conditional independence between the two features.
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Conditional Independence

Definition

@ Recall two events A, B are independent if:

P{A B} = P{A}P{B} or P{A|B} = P{A}

@ In general, two events A, B are conditionally independent,
conditional on event C if:

P{A, B|C} = P{A|C}P{B|C} or P{A|B, C} = P{A|C}
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Catsdl Ciain

Definition

e For three events A, B, C, the configuration A — B — C is
called causal chain.
e In this configuration, A is not independent of C, but A is

conditionally independent of C given information about B.

@ Once B is observed, A and C are independent.
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Common Cause
Definition

e For three events A, B, C, the configuration A« B — C is
called common cause.
e In this configuration, A is not independent of C, but A is

conditionally independent of C given information about B.

@ Once B is observed, A and C are independent.
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Common Effect

Definition

e For three events A, B, C, the configuration A — B « C is
called common effect.
e In this configuration, A is independent of C, but A is not

conditionally independent of C given information about B.

@ Once B is observed, A and C are not independent.
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Training Bayes Net

Definition

e Training a Bayesian network given the DAG is estimating the
conditional probabilities. Let P (Xj) denote the parents of the

vertex Xj, and p (Xj) be realizations (possible values) of
P(X;).

P {xj|p (X;)} . p (X)) € P (X))

@ |t can be done by maximum likelihood estimation given a
training set.
; Cp(X)
Pl (X)) = ——
p(X))
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Bayesian Network Diagram
Quiz

o Story: either Amber (H) or Johnny's dog (D) stepped on a
bee, and put something on Johnny's bed (B), and given there

is something on Johnny's bed (B), Johnny (J) and Amber (A)
can be unhappy.
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Bayesian Network Diagram CPT Count
Quiz
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Bayes Net Training Example, Training
Quiz

@ Given a network and the training data.
H—-B,D—-B B—- J B-— A

H|D|B

= =IOl =IO
OO R ORI R ol >

R =) R =R,RO OO O

O] = D O] O = O] O
= OO0 = OO O




Generative Models Bayesian Network Naive Bayes
0000000 000000000800 00C000000000000000 0000000

Bayes Net Training Example, Training 1
Quiz

o Compute P{D = 1}.
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Bayes Net Training Example, Training 2
Quiz

o Compute P{J =1|B =1}.

H|D|B|J|A
010|010
00 0|01
110011
0|1 (0|11
010110
O] 0|1 |01
1101110
0|11 10
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Bayes Net Training Example, Training 3

Quiz
o What is the conditional probability P{J = 1|B = 0}7
@ A: [ don't understand, B: }- , C: l , D: § Bl
4 2 4
H| D |B|J|A
O[]0 [0|1]|O0
0[]0 [0]0]|1
110|011
0O(1|0|1]1
O[O0 1|10
00101
101|110
0O(1|1]1]0
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Bayes Net Training Example, Training 4
Quiz

o Compute P{B =1|H =0,D = 1}.
H | D

Ol OO O|I= O O
=IO O|IO|I =IO oO| O
=== O OO
== ORI R =R O
O|lo| | ol R ol >
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Bayes Net Training Example, Training 5
Quiz

o What is the conditional probability P {B = 1|H = 0, D = 0}?
E

@ A: [ don't understand, B: }- , C: l , D: § Bl
4 2 4
H|D|B|J| A
O[]0 [0|1]|O0
0[]0 [0]0]|1
110|011
0|10 |11
O[O0 1|10
0O[0|1 |01
101|110
O[1(1|1,0
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Bayes Net Training Example, Training 5
Quiz

o What is the conditional probability P{A = 0|H = 1,D = 1}?
@ A: [ don't understand, B: 0, C: —; , D: 1, E: NA
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Laplace Smoothing

Definition

@ Recall that the MLE estimation can incorporate Laplace
smoothing.
C (Xj) + 1

Xj P

CP(X_;) + |)(J'|

P {xi|p (X))} =

o Here, | X;| is the number of possible values (number of
categories) of X;,

e Laplace smoothing is considered regularization for Bayesian
networks because it avoids overfitting the training data.
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Bayes Net Inference 1

Definition

@ Given the conditional probability table, the joint probabilities

can be calculated using conditional independence.
m

P {150, sxs X} = HP{XAXLXQ, sy X s D00 By s K}
j=1

|
.:IE

P {xj|p (X;)}

—
|
=
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Bayes Net Inference 2

Definition

e Given the joint probabilities, all other marginal and conditional
probabilities can be calculated using their definitions.

IP{)Q’,XJ'!?XJ;HV..}

P {xjlx, s} =

IP{XJ'!,XJ;H, }
P{Xj?)(jf?,‘{jﬂ:,...} = Z IED{X:[?XQ,...,Xm}
Xk k#_’.u,f H
IP{)«:J-,-?@:,...} — Z IP{Xl,Xz,....?Xm}

Xk k__),(_.‘),! H'



Generative Models Bayesian Network Naive Bayes
0000000 00000000000000000080000000000 0000000

Bayes Net Inference Example 1
Quiz

@ Assume the network is trained on a larger set with the
following CPT. Compute P{H =0,D =1|J=1,A = 0}?

P{H =1} =0.001,P{D = 1} = 0.001
P{B=1H=1,D=1}=0.95P{B=1H=1,D =0} =0.94
P{B=1|H=0,D=1} =0.29,P{B=1|H=0,D = 0} = 0.00

P{J=1/B=1}=09,P{J=1|B =0} =0.05
P{A=1/B=1} =0.7,P{A=1|B =0} = 0.01
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Bayes Net Inference Example 1 Computation 1
Quiz
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Bayes Net Inference Example 1 Computation 2
Quiz
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Bayes Net Inference Example 2 l
Quiz 0 H D

1]
. \91 038 uy > @/

e
N
e Compute P{D = 1|H = 0}7 3 ‘/( \)A\
P{H =1} = 0.001,2{D = 1} = 0.001
P{B=1H=1,D=1}=0.95P{B=1/H=1,D =0} = 0.94
P{B=1H=0D=1}=029,P{B=1/H=0,D =0} =0.00

e A:0, B:0.001, C: 0.0094, D: 0.0095, E: 1
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Bayes Net Inference Example 2 Derivation
Quiz
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Bayes Net Inference Example 3

Quiz H D

G v 9.65
/‘ IPLINONES) Hlem D]
o Compute P{H=0,D =1|B =1}? jOP7

P{H =1} = 0.001, P {D = 1} = 0.001
|H—1D—l}—0951P’{B—1|H—1D—O}—094
1|H=0,D=1}=0.29,P{B=1|H =0,D = 0} = 0.00

\:‘\:0, B: 0.001, C: 0.0094, D: 0.0095, E: 1 @}
Q(§%3 = \Vf g (}/ H\g o P"g %1 1, DS Ourq
P( §$ ﬂD i V/ & Sh *DS A \,;>
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Bayes Net Inference Example 3 Derivation
Quiz
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Bayes Net Inference Example 4 R
917\“ Quiz s
b 4 i AL — BU/ J} 1t &
AR S ‘ﬂ}}z}/gj“f/llej
oD fSe 3

o Compute P{B = 1lJ=1,A=0}?
P{J=1B=1}=0.9P{J=1|B =0} =0.05

P{A=1|B=1}=0.7,P{A=1|B =0} =0.01
T—— = lwor‘y | &B

Given

G’f =1} = 0.001 - 0.001 - 0.95 + 0.001 - 0.999 - (0.94+ 0.29).
073 . 9A .8) *v-§T 1/~ 983

f@rSS 187 '?r%AlBB" -<B) l
(31|18 3: RfA -8y 618
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Bayes Net Inference Example 4 Derivation
Quiz
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Network Structure

Discussion

e Selecting from all possible structures (DAGs) is too difficult.
e Usually, a Bayesian network is learned with a tree structure.

@ Choose the tree that maximizes the likelihood of the training
data.
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Chow Liu Algorithm

Discussion

@ Add an edge between features X; and X with edge weight
equal to the information gain of X; given Xj for all pairs j, .

e Find the maximum spanning tree given these edges. The
spanning tree is used as the structure of the Bayesian network.
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Classification Problem

Discussion

e Bayesian networks do not have a clear separation of the label
Y and the features Xi, Xo, ..., Xm.

@ The Bayesian network with a tree structure and Y as the root
and Xi, Xo, ..., X, as the leaves is called the Naive Bayes
classifier.

@ Bayes rules is used to compute P{Y = y|X = x}, and the
prediction y is y that maximizes the conditional probability.

¥ =arpmax P{Y = y|X = x5}
y
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Naive Bayes Diagram

Discussion
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Multinomial Naive Bayes

Discussion

@ The implicit assumption for using the counts as the maximum
likelihood estimate is that the distribution of X;|Y =y, or in
general, X;|P (X;) = p(Xj) has the multinomial distribution.
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Gaussian Naive Bayes

Discussion

e If the features are not categorical, continuous distributions
can be estimated using MLE as the conditional distribution.

o Gaussian Naive Bayes is used if X;|Y = y is assumed to have

the normal distribution.
1 (=)

T\ ()

lim IP{X<X x+elY =y} =

e—0 & , /2?1.09)
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Gaussian Naive Bayes Training

Discussion

e Training involves estimating Mg) and J}(;f) since they

completely determine the distribution of X;|Y = y.

, 4 % i
@ The maximum likelihood estimates of ,ug;’) and (O'}(,J)) are the

sample mean and variance of the feature j.

0 _ 1% 5
= 1 Z Xij Liy=y}, Ny = Z L=y}
=1 =1

2 1 ¢ 72
(J}(,J)) == Z (XU - M(fj)) L=y
Y =1
. OV .. 1 NS
sometimes (oy ) ¥ 1 . (X;j — Hy ) Liyi=y)
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Tree Augmented Network Algorithm

Discussion

@ It is also possible to create a Bayesian network with all
features Xi, X, ..., X, connected to Y (Naive Bayes edges)
and the features themselves form a network, usually a tree

(MST edges).

e Information gain is replaced by conditional information gain
(conditional on Y') when finding the maximum spanning tree.

e This algorithm is called TAN: Tree Augmented Network.
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Tree Augmented Network Algorithm Diagram

Discussion





