
• [3 points] Suppose you are given a neural network with 3 hidden layers, 9 input units, 6 output units, and  $\begin{bmatrix} 10 & 5 & 5 \end{bmatrix}$  hidden units. In one backpropogation step when computing the gradient of the cost (for example, squared loss) with respect to  $w_{11}^{(1)}$ , the weight in layer 1 connecting input 1 and hidden unit 1, how many weights (including  $w_{11}^{(1)}$  itself, and including biases) are used in the backpropogation step of  $\frac{\partial C}{\partial w_{11}^{(1)}}$ ?

 Note: the backpropogation step assumes the activations in all layers are already known so do not count the weights and biases in the forward step computing the activations.



$$\frac{\partial C}{\partial v_{ii}} = \alpha_{ii}^{(1)} = \lambda_{ii}^{(1)} - \lambda_{ii}^{(1)} = \lambda_{ii}^{(1)} - \lambda_{ii}^{(1)}$$

the of

- [3 points] A tweet is ratioed if a reply gets more likes than the tweet. Suppose a tweet has 3 replies, and each one of these replies gets more likes than the tweet with probability 0.96 if the tweet is bad, and probability 0.11 if the tweet is good. Given a tweet is ratioed, what is the probability that it is a bad tweet? The prior probability of a bad tweet is 0.73.
- Answer:
   Calculate

$$P_{1} \{ B \} = 0.73 \ \text{V} \quad P_{1} \{ 7B \} = 0.27 \ \text{V}$$

$$P_{1} \{ R \} B \} = 1 - (1 - 0.96)^{3} = 1 - 0.04^{3} \quad \text{V}$$

$$P_{1} \{ 1R \} B \} = 0.04^{3}$$

$$P_{r} \int R | -83 = (-(1-0.11)^{3} = 1-0.89^{3})$$

$$P_{r} \int R | 1 | 183 = 0.89^{3}$$

$$P_{r} \int B | R J = \left[ \frac{P_{r} \int B_{r} R_{r} R_{r}}{P_{r} \int R_{r} R_{r}} \right] + P_{r} \int R_{r} R_{r}$$

- [3 points] Given an infinite state sequence where the pattern "

  [3 2 3 1 2 1 2 1]" is repeated infinite number of time. What is the (maximum likelihood) estimated transition probability from state 1 to 3 (without smoothing)?
- Answer: Calculate

$$\hat{P}_{r} \left\{ \frac{3}{3} \right\} = \frac{C_{1-3}}{C_{1}} = \frac{1}{3}$$

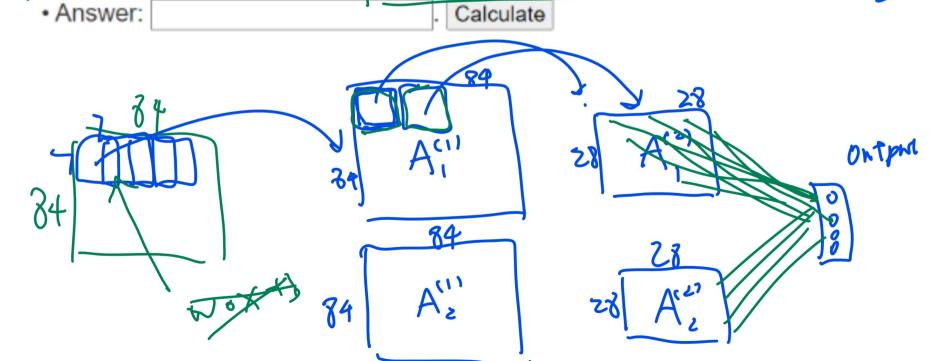
$$\hat{P}_{r} \left\{ \frac{3}{2} \right\} = \frac{2}{3} \hat{P}_{r} \left\{ \frac{1}{3} \right\} = 0$$

Not perception.

• [3 points] A hard margin support vector machine (SVM) is trained on the following dataset. Suppose we restrict  $\underline{b} = -1$ , what is the value of w? Enter a single number, i.e. do not include b. Assume the SVM classifier is

| $1_{\{\overrightarrow{wx+b}\geq 0\}}$ . |       |   | VTX1 | = 2 | → g= |  |
|-----------------------------------------|-------|---|------|-----|------|--|
| $x_i$                                   | 7     | 8 | 9    | 18  | 20   |  |
| $y_i$                                   | 0     | 1 | 1    | 1   | 1    |  |
| В                                       | 1 ( ) |   | 000  | '   | Α    |  |

Answer:


Calculate

部制制

SVM

メイル コ magin = 1 5 x > 1 3

• [4 points] A convolutional neural network has input image of size  $84 \times 84$  that is connected to a convolutional layer that uses a  $7 \times 7$  filter, zero padding of the image, and a stride of 1. There are 2 activation maps (Here, zero-padding implies that these activation maps have the same size as the input images.) The convolutional layer is then connected to a pooling layer that uses  $3 \times 3$  max pooling, a stride of 3 (non-overlapping, no padding) of the convolutional layer. The pooling layer is then fully connected to an output layer that contains 4 output units. There are no hidden layers between the pooling layer and the output layer. How many different weights must be learned in this whole network, not including any bias.



2 files 0 veryles 28.28.4 37.7 = 49 veryles two of these

2.7.7 + 2.28.28.4

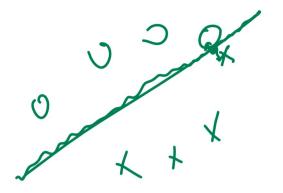
2021 MIA-C Q4

# Question 4

• [4 points] You are given a training set of six points and their 2-class classifications (+ or -): (-3.56, +), (-2.33, +), (-1.72, +), (1.49, -), (3.24, -), (4.4, -). What is the decision boundary associated with this training set using 3NN (3 Nearest Neighbor)? Note: there is one more point compared to the question from the homework.

Answer:

Calculate


+











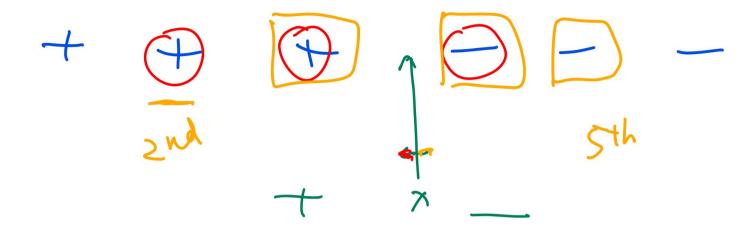
$$(-2.33 + 3.24)$$

decision boundary

### **Question 2**

• [4 points] There are 64 parrots. They have either a red beak or a black beak. They can either talk or not. Complete the two cells in the following table so that the mutual information (i.e. information gain) between "Beak" and "Talk" is 9.44:

independent


|           | Number of parrots | Beak  | Talk |
|-----------|-------------------|-------|------|
| $\bigcap$ | 22                | Red   | Yes  |
|           | ?                 | Red   | No   |
|           | ?? 64-22-7-X=35-X | Black | Yes  |
|           | 7                 | Black | No 🗸 |


| <ul> <li>Answer (comma separated vector):</li> </ul> |  | Calculate |
|------------------------------------------------------|--|-----------|
|------------------------------------------------------|--|-----------|

 $R = \frac{22}{64} \qquad \frac{x}{64}$   $R = \frac{224x}{64}$   $R = \frac{35-x}{64} \qquad \frac{1}{64}$   $R = \frac{224x}{64}$   $R = \frac{22$ \* marginal distribution of Break Talk - marginel of Talk independence. PISR.YJ=P, [R].P.JYS  $\frac{22}{64} = \frac{22 + x}{64} \cdot \frac{57 - x}{64} = \frac{22 + x}{64}$ 

.







• [4 points] In a convolutional neural network, suppose the activation map of

a convolution layer is

. What is the activation map

after a non-overlapping (stride 2) 2 by 2 max-pooling layer?

Calculate

Answer (matrix with multiple lines, each line is a comma separated vector):

ine is a comma separated vector):