CS540 Introduction to Artificial Intelligence Lecture 11

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 7, 2022

Image Features Diagram Motivation

One Dimensional Convolution

Definition

• The convolution of a vector $x = (x_1, x_2, ..., x_m)$ with a filter $w = (w_{-k}, w_{-k+1}, ..., w_{k-1}, w_k)$ is:

$$a = (a_1, a_2, ..., a_m) = x * w$$

$$a_j = \sum_{t=-k}^{k} w_t x_j (x_t, y_t) = 1, 2, ..., m \quad \text{(weights)}$$

- w is also called a kernel (different from the kernel for SVMs).
- The elements that do not exist are assumed to be 0.

Two Dimensional Convolution

Definition

• The convolution of an $m \times m$ matrix X with a $(2k+1) \times (2k+1)$ filter W is:

$$A = X * W$$

$$A_{j,j'} = \sum_{s=-k}^{k} \sum_{t=-k}^{k} W_{s,t} X_{j-s,j-j}, j,j' = 1,2,...,m$$

- The matrix W is indexed by (s,t) for s=-k,-k+1,...,k-1,k and t=-k,-k+1,...,k-1,k
- The elements that do not exist are assumed to be 0.

Convolution Diagram and Demo

Image Gradient

Definition

 The gradient of an image is defined as the change in pixel intensity due to the change in the location of the pixel.

$$\frac{\partial I\left(s,t\right)}{\partial s} \approx \frac{I\left(s+\frac{\varepsilon}{2},t\right) - I\left(s-\frac{\varepsilon}{2},t\right)}{\varepsilon}, \varepsilon = 1$$

$$\frac{\partial I\left(s,t\right)}{\partial t} \approx \frac{I\left(s,t+\frac{\varepsilon}{2}\right) - I\left(s,t-\frac{\varepsilon}{2}\right)}{\varepsilon}, \varepsilon = 1$$

Image Derivative Filters Definition

 The gradient can be computed using convolution with the following filters.

$$w_{x} = \begin{bmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, w_{y} \begin{bmatrix} b & -1 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Sobel Filter

Definition

 The Sobel filters also are used to approximate the gradient of an image.

$$\begin{cases} W_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, W_y = \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Gradient of Images

Definition

• The gradient of an image I is $(\nabla_x I, \nabla_y I)$.

$$\nabla_x I = W_x * I, \nabla_y I = W_y * I$$

 The gradient magnitude is G and gradient direction Θ are the following.

$$G = \sqrt{\nabla_x^2 + \nabla_y^2}$$

$$\Theta = \arctan\left(\frac{\nabla_y}{\nabla_x}\right)$$

Gradient of Images Demo

Pick the least popular choice:

ABUDE

Convolution Example

1 2 3
4 5 6
$$\Rightarrow$$
 9 8 7
7 8 9 \Rightarrow 6 5 4 Alipped filter

• Find the gradient magnitude and direction for the center cell

Gradient Example Quiz

Convolution Example 1

missing entry =) zero-padding

Stride | [0/0 n7].

• $A: \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B: \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$

•
$$C: \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}$$

Convolution Example 2

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} * \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

•
$$A: \begin{bmatrix} -1 & -3 & -3 \\ 0 & 0 & 0 \\ 1 & 3 & 3 \end{bmatrix}, B: \begin{bmatrix} -3 & -3 & 3 \\ -4 & -4 & 4 \\ -3 & -3 & 3 \end{bmatrix}$$

•
$$C: \begin{bmatrix} -3 & -4 & -3 \\ -3 & -4 & -3 \\ 3 & 4 & 3 \end{bmatrix}, D: \begin{bmatrix} -1 & 0 & 1 \\ -3 & 0 & 3 \\ -3 & 0 & 3 \end{bmatrix}$$

 Scale Invariant Feature Transform (SIFT) features are features that are invariant to changes in the location, scale, orientation, and lighting of the pixels.

Histogram Binning Diagram

Discussion

9 bing

 Histogram of Oriented Gradients features is similar to SIFT but does not use dominant orientations.

Classification

Discussion

- SIFT features are not often used in training classifiers and more often used to match the objects in multiple images.
- HOG features are usually computed for every cell in the image and used as features (in place of pixel intensities) in Place classification algorithms such as SVM.

