

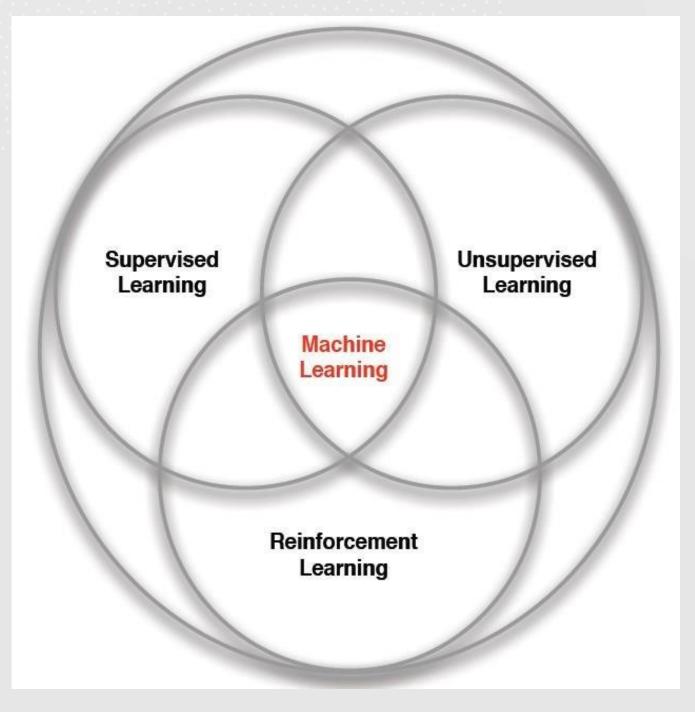
CS 540 Introduction to Artificial Intelligence **Reinforcement Learning**

Asmit Nayak

UW-Madison

Based on slides by David Silver, Fred Sala, Yingyu Liang and R. Sutton

Branches of Machine Learning



What makes RL different?

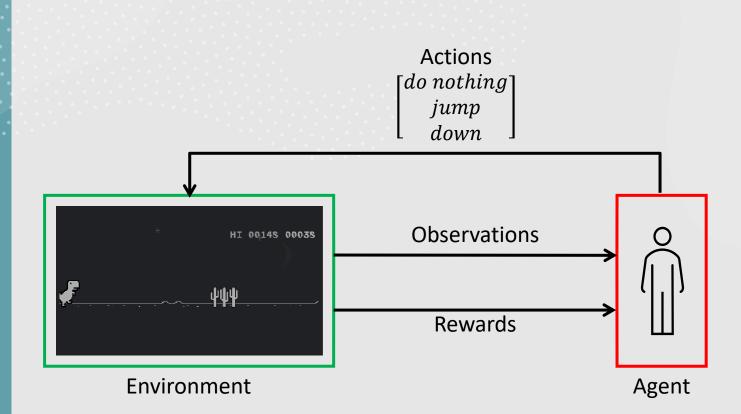
No "supervisor"; only <u>rewards</u>

> Time (or, timesteps) matters!

Actions affect the subsequent observations/nextactions

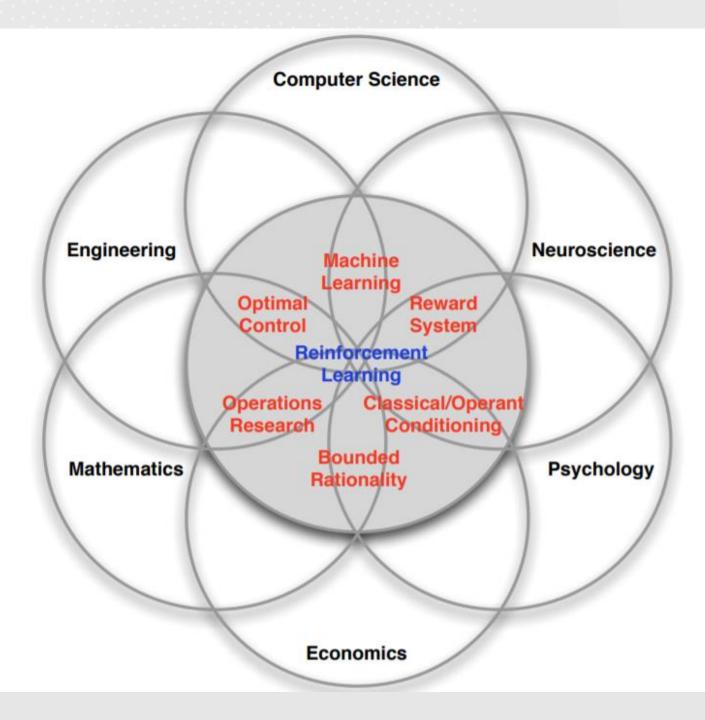
Feedback is delayed

Basic construct of a RL model?



Goal: <u>Maximize</u> total reward

Uses of RL in the world



Examples of RL in wild.

Playing strategy games like Dota 2. (Open-Al Five) Defeat professional Go player. Go is *the* most challenging game for an AI. (Alpha Go)

Make a humanoid robot walk

Fly a RChelicopter

A robot learning to walk.

Learning to Walk via Deep Reinforcement Learning

Submission ID: 60

DeepMind AI Learning to walk.



DeepMind playing Atari Breakout.

Google Deepmind DQN playing Atari Breakout Setup: NVIDIA GTX 690 <u>i7-37</u>70K - 16 GB RAM Ubuntu 16.04 LTS Google Deepmind DQN

Building an RL "Model"

+

0

Basic setup:

- Set of states; S (Note: observations \subseteq S)
- Set of actions; *A*
- Information: at time t, state is $s_t \in S$, reward r_t , and the <u>history</u> till then
- Agent makes a choice of action (a_t) based on the information at time t moving on to state s_{t+1}

GOAL: Find <u>a map</u> of state-action pairs to maximize rewards

POLICY

History & States

Q. What is *history*?

Ans: The history is the sequence of observations, actions, rewards, i.e., all observable variables up to time t

The action taken by agent at t is determined based the history at time t

Q. What is <u>state</u>?

Ans: State is the information used to determine what happens next

State is the function of history:

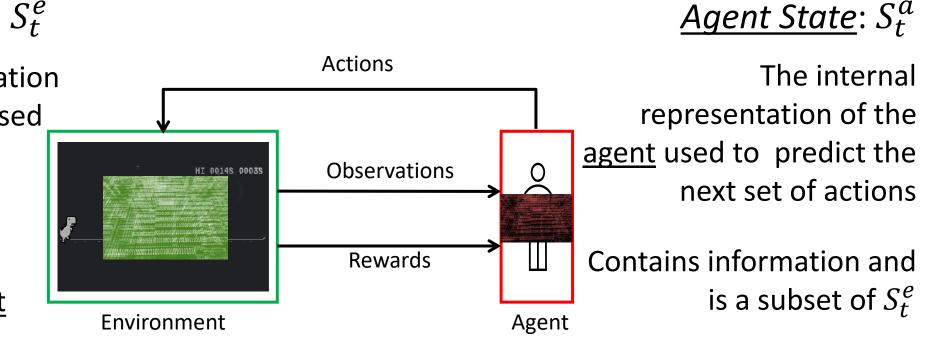
$$S_t = f(H_t)$$

States

<u>Environment State</u>: S_t^e

The private representation of the <u>environment</u>, used to get the next set of observations and rewards

May contain <u>irrelevant</u> information



 $S_t^a = f(H_t)$

States

The *information state* (Markov state) contains <u>all the useful information</u> from the history

Definition:

A state S_t is a <u>Markov State</u> iff: $\mathbb{P}[S_{t+1} \mid S_t] = \mathbb{P}[S_{t+1} \mid S_1, \dots, S_t]$

- "The future is independent of the past given the present"
- Once the state is known, history can be discarded
- S_t^a is Markov iff it contains <u>all the necessary infos</u>
- S_t^e is Markov; H_t is Markov

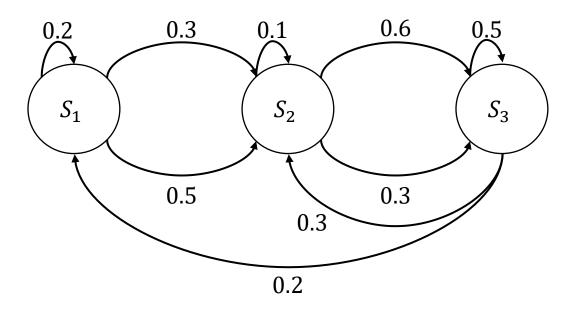
Markov States

$$\mathbb{P}(S_t = S_1 | S_{t-1} = S_1, S_{t-2} = S_3) = 0.2$$

$$\mathbb{P}(S_t = S_1 | S_{t-1} = S_1, S_{t-2} = S_1) = 0.2$$

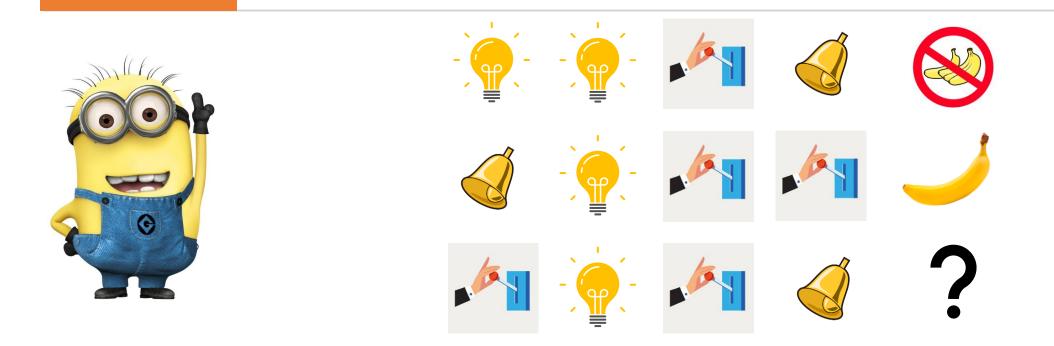
$$\mathbb{P}(S_t = S_3 | S_{t-1} = S_2, S_{t-2} = S_1) = 0.6$$

$$\mathbb{P}(S_t = S_3 | S_{t-1} = S_2, S_{t-2} = S_2) = 0.6$$



Minions Example

(adapted from David Silver)



- What if $S_t^a = \text{last 3}$ items of the sequence?
- What if $S_t^a = \text{count of lights, bulbs and levers?}$
- What if $S_t^a = \text{exact sequence}$?

Markov Decision Process

Given,

- 1. Set of States: *S*, and a set of Actions: *A*
- 2. Markov State Transitions model: $P(s_{t+1} | s_t, a_t)$
- 3. Reward functions: $r(s_t)$

Find the optimal *policy*: $\pi(s_t): S \rightarrow A$

RL Agent has one or more of the following features:

- Policy: Agent's behavior function (mapping of states and actions)
- Value Function: How good a state and/or action is
- Model: Agent's representation of the environment

Policy

- Policy: Agent's behavior function
- It's a mapping from states to actions
- Deterministic Policy: $a = \pi(s)$
- Stochastic Policy: $\pi(s|a) = \mathbb{P}[A_t = a \mid S_t = s]$
 - Good for exploration

Value Function

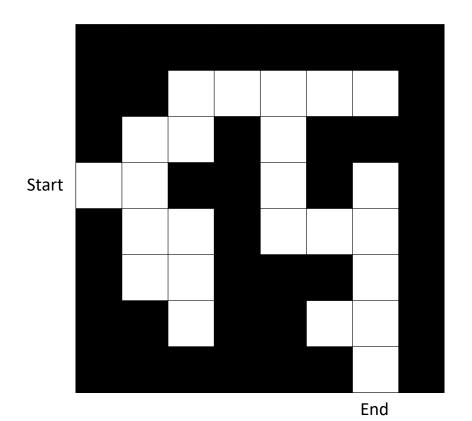
- Predicts the future rewards from a state, for a given policy
- Used to evaluate how good/bad a state is
- Is used to select between actions.

$$V_{\pi}(s_t) = \sum_{t=t}^{T} r(s_t) = \mathbb{E}_{\pi}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \cdots]$$

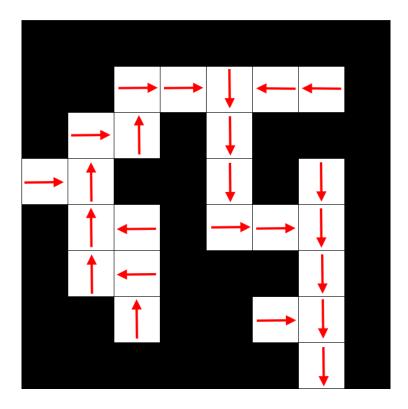
Model

- Predicts the <u>environment</u> would do next
- \mathcal{P} predicts the next state
- \mathcal{R} predicts the immediate rewards

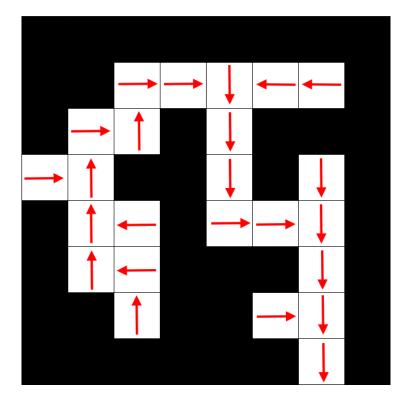
$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$
$$\mathcal{R}_{s}^{a} = \mathbb{E}[R_{t+1} | S_t = s, A_t = a]$$

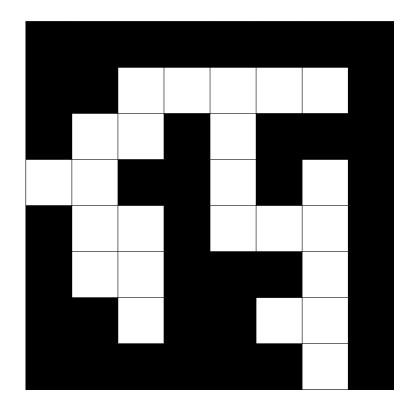


- Reward = -1 per timestep
- Actions = N,E,W,S
- States = Agent's location



Arrows represent the policy $\pi(s)$ at each state s





		-12	-11	-10	-11	-12	
	-14	-13		-9			
-16	-15			-8		-6	
	-16	-17		-7	-6	-5	
	-17	-18				-4	
		-19			-3	-2	
						-1	

Values represent $V_{\pi}(s)$ for each state *s* following policy π .

Value Function \rightarrow Policy

Value Function:

$$V_{\pi}(s_t) = \sum_{t=t}^{T} r(s_t)$$

... but this doesn't converge!

Discounted Rewards: $0 \le \gamma < 1$

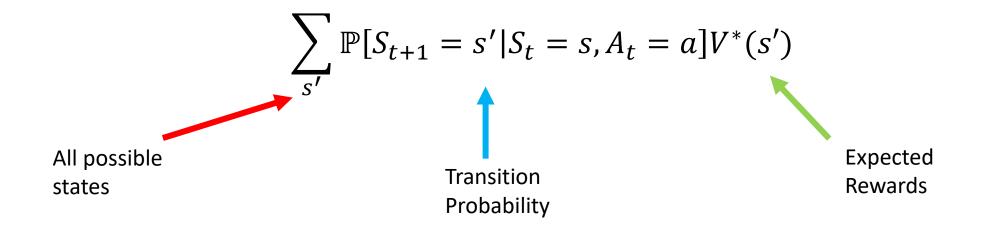
$$V_{\pi}(s_t) = r(s_t) + \gamma r(s_{t+1}) + \gamma^2 r(s_{t+2}) + \dots = \sum_{t \ge 0} \gamma^t r(s_t)$$

Value Function \rightarrow Policy

So now that we have a value function V_{π} for policy π how do we get the optimal policy?

Let's the optimal policy be π^* and its corresponding value function be V^*

So, what will be the expected value of an action for an agent be?



Value Function
$$\rightarrow$$
 Policy

Therefore, the optimal policy would be:

$$\pi^*(s) = \operatorname{argmax}_a \sum_{s'} \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a] V^*(s')$$

BUT!!

<u>We defined V^* in terms of π^* </u>

Value Function
$$\rightarrow$$
 Policy

How do we get v^* then?

$$V_{\pi}(s_t) = r(s_t) + \gamma r(s_{t+1}) + \gamma^2 r(s_{t+2}) + \dots = \sum_{t \ge 0} \gamma^t r(s_t)$$

$$\Rightarrow V_{\pi}(s_{t}) = \sum_{a} \pi(a|s_{t}) \sum_{s_{t+1},r} \mathbb{P}[s_{t+1},r|s_{t},a][r+\gamma V_{\pi}(s_{t+1})]$$

$$\therefore V^*(s) = \sum_a \pi(a|s) \sum_{s',r} \mathbb{P}[s',r|s,a][r+\gamma V_{\pi}(s')]$$

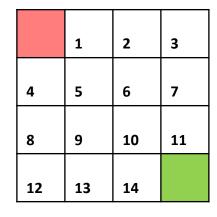
(Bellman's Equation)

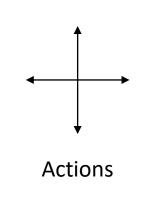
Value Iterations

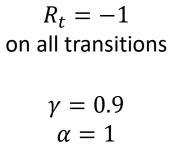
We know:

- r(s) and transition probabilities $\mathbb{P}[s'|s, a]$
- V^* satisfies the Bellman equation, as it's recursive
- Therefore, we will use the above property and start with $V_0(s) = 0$, and update the value per-iteration as:

$$V_{i+1}(s) = \sum_{a} \pi(a|s) \sum_{s',r} \mathbb{P}[s',r|s,a][r + \gamma V_{\pi}(s')]$$

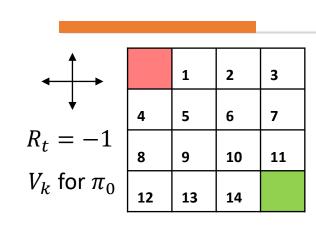






 $\pi_0 \Rightarrow \mathbb{P}[a] = 0.25 \forall a$ For terminal states s' = s

Grid World



	k = 0)			k =	1			
	0	0	0	0	0	-1	-1	-1	
	0	0	0	0	-1	-1	-1	-1	
	0	0	0	0	-1	-1	-1	-1	
	0	0	0	0	-1	-1	-1	0	
	0	-1.675	-1.9	-1.9	$V_k = 3$	8(0.25 *	« (—1 +	- 0.9 *	(-1))) + 0.25 * (-1 + 0) = -1.675
1	-1.675	-1.9	-1.9	-1.9	$V_k = 4$	·(0.25 *	< (-1 +	- 0.9 *	(-1))) = -1.9

$$k = 2$$

-1.9

-1.9

-1.9

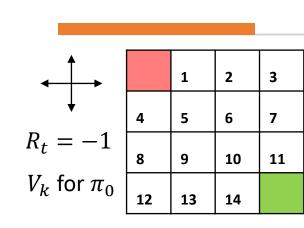
-1.9

-1.9

-1.675

-1.675

0

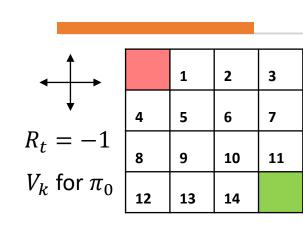


k = 0)			k = 1	k = 1				k = 2			
0	0	0	0	0	-1	-1	-1	0	-1.675	-1.9	-1.9	
0	0	0	0	-1	-1	-1	-1	-1.675	-1.9	-1.9	-1.9	
0	0	0	0	-1	-1	-1	-1	-1.9	-1.9	-1.9	-1.675	
0	0	0	0	-1	-1	-1	0	-1.9	-1.9	-1.675	0	

	0	-2.23	-2.67	-2.71
k = 3	-2.23	-2.61	-2.71	-2.66
	-1.8	-2.71	-2.61	-2.23
	-2.71	-2.66	-2.23	0

$$V_k = 0.25 * (-1 + 0.9 * (-1.675))$$

+0.25 * (-1 + 0.9 * (-1.9))
+0.25 * (-1 + 0.9 * (-1.9))
+0.25 * (-1 + 0) = -2.23



k = 0)			k = 2	k = 1				k = 3			
0	0	0	0	0	-1	-1	-1	o	-2.23	-2.67	-2.71	
0	0	0	0	-1	-1	-1	-1	-2.23	-2.61	-2.71	-2.66	
0	0	0	0	-1	-1	-1	-1	-1.8	-2.71	-2.61	-2.23	
0	0	0	0	-1	-1	-1	0	-2.71	-2.66	-2.23	0	

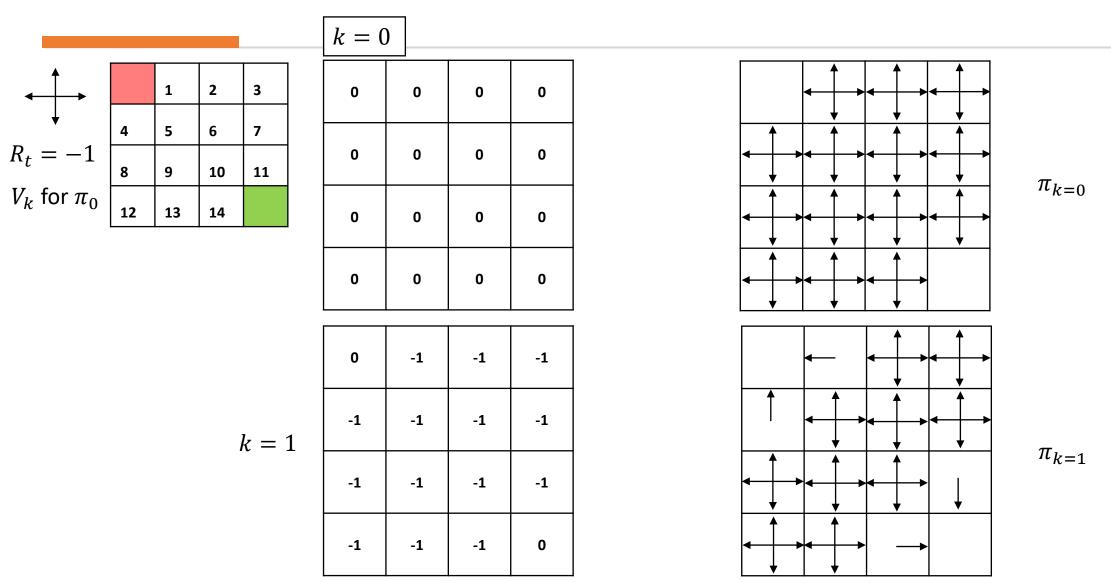
	0	-5.28	-7.13	-7.65
= ∞	-5.28	-6.60	-7.18	-7.13
	-7.13	-7.17	-6.60	-5.28
	-7.65	-7.13	-5.28	0

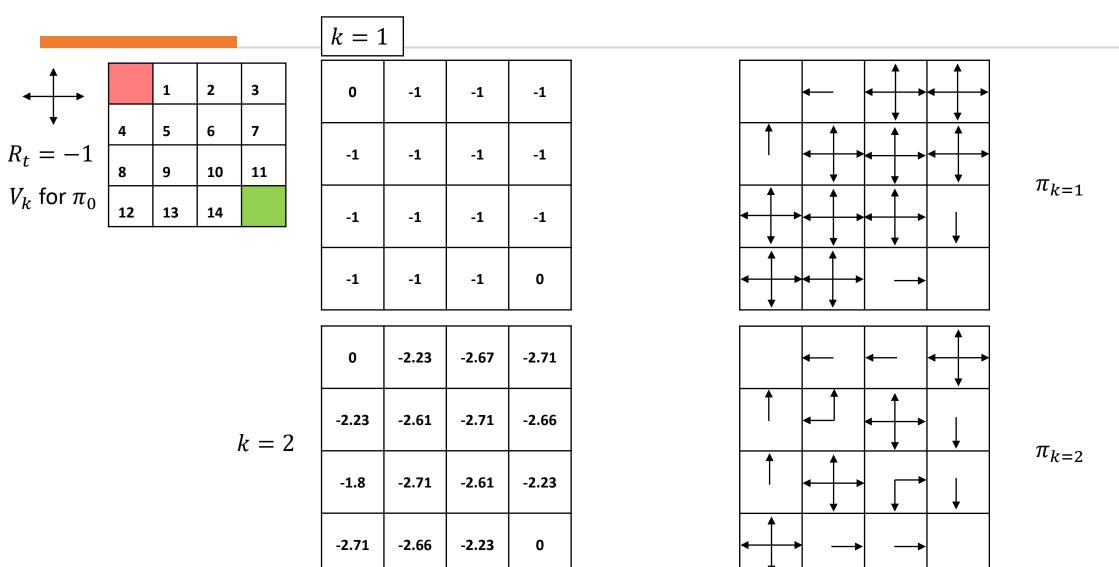
$$k = \alpha$$

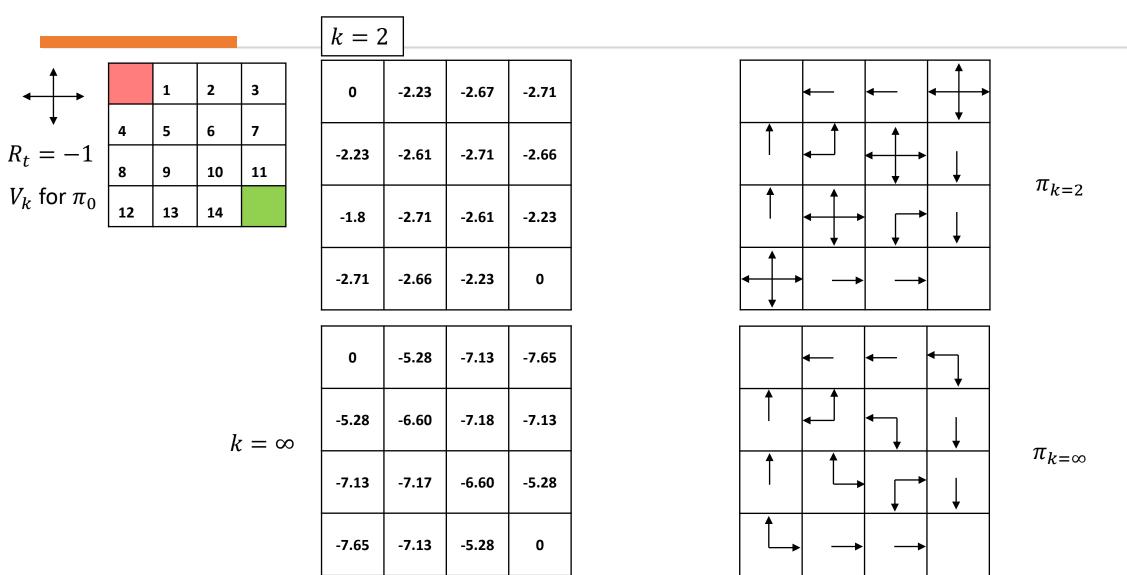
Policy Iterations

For a policy π :

- Evaluate $V_{\pi}(s)$
- Update $\pi \leftarrow \pi'$
- Keep updating till $\Delta \to 0$, where $\Delta = \max(\Delta, V_{\pi}(s) V'_{\pi}(s))$







Q-Learning

For the previous value iteration, we knew $\mathbb{P}[s'|s, a]$. What if we didn't?

We will use Q-Learning!

Q-Learning tells us the value of doing *a* in state *s*

$$Q(s_t, a_t) = \mathbb{E}[R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots \mid s, a]$$

We follow a similar iterative approach as value iterations and get:

$$Q(s'_t, a'_t) \leftarrow Q(s_t, a_t) + \alpha \left[r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

This is off-policy!

Exploration in Q-Learning

With some $0 \le \epsilon \le 1$ probability we choose to either take a random action at any given state or go with the highest Q(s, a) value

$$a = \begin{cases} \operatorname{argmax}_{a \in A} Q(s, a) & \epsilon \\ \operatorname{random action} a \in A \quad 1 - \epsilon \end{cases}$$

SARSA (State – Action – Reward – State – Action)

Alternative to Q-Learning, instead of choosing the best possible action we chose the next action according to the policy

$$Q(s'_t, a'_t) \leftarrow Q(s_t, a_t) + \alpha[r(s_t) + \gamma \sum_a \pi(a|s_{t+1})Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

This is on-policy!