

CS 540 Introduction to Artificial Intelligence Reinforcement Learning

Asmit Nayak UW-Madison

Based on slides by David Silver, Fred Sala, Yingyu Liang and R. Sutton

Branches of Machine Learning

What makes RL different?

> No "supervisor"; only rewards

Feedback is delayed

Time (or, timesteps)
matters!

Actions affect the subsequent observations/nextactions

Basic construct of a RL model?

Goal: Maximize total reward

Uses of RL in the world

Examples of RL in wild.

A robot learning to walk.

> Learning to Walk via Deep Reinforcement Learning

Submission ID: 60

DeepMind AI Learning to walk.

DeepMind playing Atari Breakout.

Building an RL "Model"

Basic setup:

- Set of states; S (Note: observations $\subseteq S$)
- Set of actions; A
- Information: at time t, state is $s_{t} \in S$, reward r_{t}, and the history till then
- Agent makes a choice of action $\left(a_{t}\right)$ based on the information at time t moving on to state s_{t+1}

GOAL:

Find a map of state-action pairs

to maximize rewards

History \& States

Q. What is history?

Ans: The history is the sequence of observations, actions, rewards, i.e., all observable variables up to time t

The action taken by agent at t is determined based the history at time t

Q. What is state?

Ans: State is the information used to determine what happens next

State is the function of history:

$$
S_{t}=f\left(H_{t}\right)
$$

States

Environment State: S_{t}^{e}

Agent State: S_{t}^{a}

The private representation of the environment, used to get the next set of observations and rewards

May contain irrelevant information

Actions

Environment

The internal representation of the agent used to predict the next set of actions

Contains information and is a subset of S_{t}^{e}

$$
S_{t}^{a}=f\left(H_{t}\right)
$$

States

The information state (Markov state) contains all the useful information from the history

> Definition:

A state S_{t} is a Markov State iff:

$$
\mathbb{P}\left[S_{t+1} \mid S_{t}\right]=\mathbb{P}\left[S_{t+1} \mid S_{1}, \ldots, S_{t}\right]
$$

- "The future is independent of the past given the present"
- Once the state is known, history can be discarded
- S_{t}^{a} is Markov iff it contains all the necessary infos
- S_{t}^{e} is Markov; H_{t} is Markov

Markov States

$$
\begin{aligned}
& \mathbb{P}\left(S_{t}=S_{1} \mid S_{t-1}=S_{1}, S_{t-2}=S_{3}\right)=0.2 \\
& \mathbb{P}\left(S_{t}=S_{1} \mid S_{t-1}=S_{1}, S_{t-2}=S_{1}\right)=0.2 \\
& \mathbb{P}\left(S_{t}=S_{3} \mid S_{t-1}=S_{2}, S_{t-2}=S_{1}\right)=0.6 \\
& \mathbb{P}\left(S_{t}=S_{3} \mid S_{t-1}=S_{2}, S_{t-2}=S_{2}\right)=0.6
\end{aligned}
$$

Minions Example

?

- What if $S_{t}^{a}=$ last 3 items of the sequence?
- What if $S_{t}^{a}=$ count of lights, bulbs and levers?
- What if $S_{t}^{a}=$ exact sequence?

Markov Decision Process

Given,

1. Set of States: S, and a set of Actions: A
2. Markov State Transitions model: $P\left(s_{t+1} \mid s_{t}, a_{t}\right)$
3. Reward functions: $r\left(s_{t}\right)$

Find the optimal policy: $\pi\left(s_{t}\right): S \rightarrow A$

RL Agent

RL Agent has one or more of the following features:

- Policy: Agent's behavior function (mapping of states and actions)
- Value Function: How good a state and/or action is
- Model: Agent's representation of the environment

Policy

- Policy: Agent's behavior function
- It's a mapping from states to actions
- Deterministic Policy: $a=\pi(s)$
- Stochastic Policy: $\pi(s \mid a)=\mathbb{P}\left[A_{t}=a \mid S_{t}=s\right]$
$>$ Good for exploration

Value Function

- Predicts the future rewards from a state, for a given policy
- Used to evaluate how good/bad a state is
- Is used to select between actions.

$$
V_{\pi}\left(s_{t}\right)=\sum_{t=t}^{T} r\left(s_{t}\right)=\mathbb{E}_{\pi}\left[R_{t}+\gamma R_{t+1}+\gamma^{2} R_{t+2}+\cdots\right]
$$

Model

- Predicts the environment would do next
- \mathcal{P} predicts the next state
- \mathcal{R} predicts the immediate rewards

$$
\begin{gathered}
\mathcal{P}_{s s^{\prime}}^{a}=\mathbb{P}\left[S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right] \\
\mathcal{R}_{s}^{a}=\mathbb{E}\left[R_{t+1} \mid S_{t}=s, A_{t}=a\right]
\end{gathered}
$$

Maze Example:

- Reward = -1 per timestep
- Actions = N,E,W,S
- States = Agent's location

Maze Example:

Arrows represent the policy $\pi(s)$ at each state s

Maze Example:

Maze Example:

> Values represent $V_{\pi}(s)$ for each state s following policy π.

Value Function \rightarrow Policy

Value Function:

$$
V_{\pi}\left(s_{t}\right)=\sum_{t=t}^{T} r\left(s_{t}\right) \quad \text {... but this doesn't converge }
$$

Discounted Rewards: $\quad 0 \leq \gamma<1$

$$
V_{\pi}\left(s_{t}\right)=r\left(s_{t}\right)+\gamma r\left(s_{t+1}\right)+\gamma^{2} r\left(s_{t+2}\right)+\cdots=\sum_{t \geq 0} \gamma^{t} r\left(s_{t}\right)
$$

Value Function \rightarrow Policy

So now that we have a value function V_{π} for policy π how do we get the optimal policy?

Let's the optimal policy be π^{*} and its corresponding value function be V^{*}
So, what will be the expected value of an action for an agent be?

Value Function \rightarrow Policy

Therefore, the optimal policy would be:

$$
\pi^{*}(s)=\operatorname{argmax}_{a} \sum_{s^{\prime}} \mathbb{P}\left[S_{t+1}=s^{\prime} \mid S_{t}=s, A_{t}=a\right] V^{*}\left(s^{\prime}\right)
$$

BUT!!

We defined V^{*} in terms of π^{*}

Value Function \rightarrow Policy

How do we get v^{*} then?

$$
\begin{aligned}
& V_{\pi}\left(s_{t}\right)=r\left(s_{t}\right)+\gamma r\left(s_{t+1}\right)+\gamma^{2} r\left(s_{t+2}\right)+\cdots=\sum_{t \geq 0} \gamma^{t} r\left(s_{t}\right) \\
& \Rightarrow V_{\pi}\left(s_{t}\right)=\sum_{a} \pi\left(a \mid s_{t}\right) \sum_{s_{t+1}, r} \mathbb{P}\left[s_{t+1}, r \mid s_{t}, a\right]\left[r+\gamma V_{\pi}\left(s_{t+1}\right)\right]
\end{aligned}
$$

$$
\therefore V^{*}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \mathbb{P}\left[s^{\prime}, r \mid s, a\right]\left[r+\gamma V_{\pi}\left(s^{\prime}\right)\right]
$$

(Bellman's Equation)

Value Iterations

We know:

- $r(s)$ and transition probabilities $\mathbb{P}\left[s^{\prime} \mid s, a\right]$
- V^{*} satisfies the Bellman equation, as it's recursive
- Therefore, we will use the above property and start with $V_{0}(s)=0$, and update the value per-iteration as:

$$
V_{i+1}(s)=\sum_{a} \pi(a \mid s) \sum_{s^{\prime}, r} \mathbb{P}\left[s^{\prime}, r \mid s, a\right]\left[r+\gamma V_{\pi}\left(s^{\prime}\right)\right]
$$

Value Iterations Example

$$
\begin{gathered}
R_{t}=-1 \\
\text { on all transitions } \\
\\
\gamma=0.9 \\
\alpha=1
\end{gathered}
$$

Actions

$$
\pi_{0} \Rightarrow \mathbb{P}[a]=0.25 \forall a
$$

For terminal states $s^{\prime}=s$

Value Iterations Example

Value Iterations Example

Value Iterations Example

Policy Iterations

For a policy π :

- Evaluate $V_{\pi}(s)$
- Update $\pi \leftarrow \pi^{\prime}$
- Keep updating till $\Delta \rightarrow 0$, where $\Delta=\max \left(\Delta, V_{\pi}(s)-V_{\pi}^{\prime}(s)\right)$

Value Iterations Example

Value Iterations Example

Value Iterations Example

Q-Learning

For the previous value iteration, we knew $\mathbb{P}\left[s^{\prime} \mid s, a\right]$. What if we didn't?
We will use Q-Learning!
Q-Learning tells us the value of doing a in state s

$$
Q\left(s_{t}, a_{t}\right)=\mathbb{E}\left[R_{t}+\gamma R_{t+1}+\gamma^{2} R_{t+2}+\cdots \mid s, a\right]
$$

We follow a similar iterative approach as value iterations and get:

$$
Q\left(s_{t}^{\prime}, a_{t}^{\prime}\right) \leftarrow Q\left(s_{t}, a_{t}\right)+\alpha\left[r\left(s_{t}\right)+\gamma \max _{a} Q\left(s_{t+1}, a\right)-Q\left(s_{t}, a_{t}\right)\right]
$$

This is off-policy!

Exploration in Q-Learning

With some $0 \leq \epsilon \leq 1$ probability we choose to either take a random action at any given state or go with the highest $Q(s, a)$ value

$$
a=\left\{\begin{array}{cc}
\operatorname{argmax}_{a \in A} Q(s, a) & \epsilon \\
\text { random action } a \in A & 1-\epsilon
\end{array}\right.
$$

SARSA (State - Action - Reward - State - Action)

Alternative to Q-Learning, instead of choosing the best possible action we chose the next action according to the policy

$$
Q\left(s_{t}^{\prime}, a_{t}^{\prime}\right) \leftarrow Q\left(s_{t}, a_{t}\right)+\alpha\left[r\left(s_{t}\right)+\gamma \sum_{a} \pi\left(a \mid s_{t+1}\right) Q\left(s_{t+1}, a_{t+1}\right)-Q\left(s_{t}, a_{t}\right)\right]
$$

This is on-policy!

