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Branches of 
Machine 
Learning



What makes 
RL different?

No “supervisor”; 
only rewards

Feedback is 
delayed

Time (or, 
timesteps) 
matters!

Actions affect the 
subsequent 

observations/next-
actions 



Basic 
construct of 
a RL model?

Environment Agent

Observations

Rewards

Actions
𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔

𝑗𝑢𝑚𝑝
𝑑𝑜𝑤𝑛

Goal: Maximize total reward



Uses of RL in 
the world



Examples of 
RL in wild.

Playing strategy 
games like Dota 
2. (Open-AI Five)

Defeat 
professional Go 
player. Go is the
most challenging 
game for an AI.  

(Alpha Go)

Make a 
humanoid robot 

walk

Fly a RC-
helicopter



A robot learning to walk.



DeepMind AI Learning to walk.



DeepMind playing Atari Breakout.



Building 
an RL 
“Model” GOAL: 

Find a map of state-action pairs 
to maximize rewards 

POLICY



History & States

Q. What is history?

Ans: The history is the sequence 
of observations, actions, rewards, 
i.e., all observable variables up to 
time 𝑡

The action taken by agent at 𝑡 is 
determined based the history at 
time 𝑡

Q. What is state?

Ans: State is the information used 
to determine what happens next

State is the function of history:

𝑆𝑡 = 𝑓(𝐻𝑡)



States

Environment State: 𝑆𝑡
𝑒

The private representation 
of the environment, used 
to get the next set of 
observations and 
rewards

May contain irrelevant
information

Agent State: 𝑆𝑡
𝑎

The internal 
representation of the 

agent used to  predict the 
next set of actions

Contains information and 
is a subset of 𝑆𝑡

𝑒

𝑆𝑡
𝑎 = 𝑓 𝐻𝑡

Environment Agent

Observations

Rewards

Actions



States

The information state (Markov state) contains all the useful information from the 

history 

Definition:

A state 𝑆𝑡 is a Markov State iff:

ℙ 𝑆𝑡+1 𝑆𝑡 = ℙ 𝑆𝑡+1 𝑆1, … , 𝑆𝑡

• “The future is independent of the past given the present”

• Once the state is known, history can be discarded

• 𝑆𝑡
𝑎 is Markov iff it contains all the necessary infos

• 𝑆𝑡
𝑒 is Markov; 𝐻𝑡 is Markov



Markov States

𝑆1 𝑆2 𝑆3

0.3

0.5

0.2 0.1 0.6

0.3

0.5

0.2

0.3

ℙ 𝑆𝑡 = 𝑆1 𝑆𝑡−1 = 𝑆1, 𝑆𝑡−2 = 𝑆3) = 0.2

ℙ 𝑆𝑡 = 𝑆1 𝑆𝑡−1 = 𝑆1, 𝑆𝑡−2 = 𝑆1) = 0.2

ℙ 𝑆𝑡 = 𝑆3 𝑆𝑡−1 = 𝑆2, 𝑆𝑡−2 = 𝑆1) = 0.6

ℙ 𝑆𝑡 = 𝑆3 𝑆𝑡−1 = 𝑆2, 𝑆𝑡−2 = 𝑆2) = 0.6



Minions Example (adapted from David Silver)

• What if  𝑆𝑡
𝑎 = last 3 items of the sequence?

• What if  𝑆𝑡
𝑎 = count of lights, bulbs and levers?

• What if  𝑆𝑡
𝑎 = exact sequence?



Markov Decision Process

Given,

1. Set of States: 𝑆, and a set of Actions: 𝐴

2. Markov State Transitions model: 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡)

3. Reward functions: 𝑟(𝑠𝑡)

Find the optimal policy: 𝜋 𝑠𝑡 : 𝑆 → 𝐴



RL Agent

RL Agent has one or more of the following features: 

• Policy: Agent’s behavior function (mapping of states and actions) 

• Value Function: How good a state and/or action is

• Model: Agent’s representation of the environment  



Policy

• It’s a mapping from states to actions

• Deterministic Policy: 𝑎 = 𝜋(𝑠)

• Stochastic Policy: 𝜋 𝑠 𝑎 = ℙ 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠]

• Policy: Agent’s behavior function

➢ Good for exploration



Value Function

• Used to evaluate how good/bad a state is

• Is used to select between actions.

• Predicts the future rewards from a state, for a given policy 

𝑉𝜋 𝑠𝑡 =෌
𝑡=𝑡

𝑇
𝑟(𝑠𝑡) = 𝔼𝜋[𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 +⋯]



Model

• 𝒫 predicts the next state

• ℛ predicts the immediate rewards

• Predicts the environment would do next

𝒫𝑠𝑠′
𝑎 = ℙ 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]

ℛ𝑠
𝑎 = 𝔼 𝑅𝑡+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]



Maze Example:

Start

End

• Reward = -1 per timestep

• Actions = N,E,W,S

• States = Agent’s location



Maze Example:

Arrows represent the policy 
𝜋(𝑠) at each state 𝑠



Maze Example:



Maze Example:

Values represent 𝑉𝜋(𝑠) for 
each state 𝑠 following policy 𝜋.



Value Function → Policy

𝑉𝜋 𝑠𝑡 =෌
𝑡=𝑡

𝑇
𝑟(𝑠𝑡) … but this doesn’t converge! 

Discounted Rewards:      0 ≤ 𝛾 < 1

𝑉𝜋 𝑠𝑡 = 𝑟(𝑠𝑡) + 𝛾𝑟(𝑠𝑡+1) + 𝛾2𝑟(𝑠𝑡+2) + ⋯ =෍

𝑡≥0

𝛾𝑡𝑟(𝑠𝑡)

Value Function:



Value Function → Policy

So now that we have a value function 𝑉𝜋 for policy 𝜋 how do we get the 

optimal policy?

Let’s the optimal policy be 𝜋∗ and its corresponding value function be 𝑉∗

So, what will be the expected value of an action for an agent be? 

෍

𝑠′

ℙ 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑉∗(𝑠′)

All possible 
states Transition 

Probability

Expected 
Rewards



Value Function → Policy

Therefore, the optimal policy would be:

𝜋∗ 𝑠 = argmax𝑎෍

𝑠′

ℙ 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 𝑉∗(𝑠′)

BUT!!

We defined 𝑉∗ in terms of 𝜋∗



Value Function → Policy

How do we get 𝑣∗ then?

𝑉𝜋 𝑠𝑡 = 𝑟(𝑠𝑡) + 𝛾𝑟(𝑠𝑡+1) + 𝛾2𝑟(𝑠𝑡+2) + ⋯ =෍

𝑡≥0

𝛾𝑡𝑟(𝑠𝑡)

⇒ 𝑉𝜋 𝑠𝑡 =෍

𝑎

𝜋 𝑎 𝑠𝑡 ෍

𝑠𝑡+1,𝑟

ℙ 𝑠𝑡+1, 𝑟 𝑠𝑡 , 𝑎 𝑟 + 𝛾𝑉𝜋 𝑠𝑡+1

∴ 𝑉∗ 𝑠 =෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

ℙ 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑉𝜋 𝑠′ (Bellman’s Equation)



Value Iterations

We know:

• 𝑟(𝑠) and transition probabilities ℙ 𝑠′ 𝑠, 𝑎

• 𝑉∗ satisfies the Bellman equation, as it’s recursive

• Therefore, we will use the above property and start with 𝑉0 𝑠 = 0, and 

update the value per-iteration as:

𝑉𝑖+1 𝑠 =෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

ℙ 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑉𝜋 𝑠′



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

Grid World

Actions

𝑅𝑡 = −1
on all transitions

𝛾 = 0.9
𝛼 = 1

𝜋0 ⇒ ℙ 𝑎 = 0.25 ∀ 𝑎

For terminal states 𝑠′ = 𝑠



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝑉𝑘 for 𝜋0

𝑘 = 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

𝑘 = 1

0 -1.675 -1.9 -1.9

-1.675 -1.9 -1.9 -1.9

-1.9 -1.9 -1.9 -1.675

-1.9 -1.9 -1.675 0

𝑘 = 2

𝑉𝑘 = 3 0.25 ∗ −1 + 0.9 ∗ (−1) + 0.25 ∗ −1 + 0 = −1.675

𝑉𝑘 = 4 0.25 ∗ −1 + 0.9 ∗ (−1) = −1.9



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝑉𝑘 for 𝜋0

𝑘 = 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

𝑘 = 1

0 -2.23 -2.67 -2.71

-2.23 -2.61 -2.71 -2.66

-1.8 -2.71 -2.61 -2.23

-2.71 -2.66 -2.23 0

𝑘 = 3

𝑉𝑘 = 0.25 ∗ −1 + 0.9 ∗ −1.675

+0.25 ∗ −1 + 0.9 ∗ −1.9

+0.25 ∗ −1 + 0.9 ∗ −1.9

+0.25 ∗ −1 + 0 = −2.23

0 -1.675 -1.9 -1.9

-1.675 -1.9 -1.9 -1.9

-1.9 -1.9 -1.9 -1.675

-1.9 -1.9 -1.675 0

𝑘 = 2



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝑉𝑘 for 𝜋0

𝑘 = 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

𝑘 = 1

0 -5.28 -7.13 -7.65

-5.28 -6.60 -7.18 -7.13

-7.13 -7.17 -6.60 -5.28

-7.65 -7.13 -5.28 0

𝑘 = ∞

0 -2.23 -2.67 -2.71

-2.23 -2.61 -2.71 -2.66

-1.8 -2.71 -2.61 -2.23

-2.71 -2.66 -2.23 0

𝑘 = 3



Policy Iterations

For a policy 𝜋:

• Evaluate 𝑉𝜋(𝑠)

• Update 𝜋 ⟵ 𝜋′

• Keep updating till Δ ⟶ 0, where ∆ = max(∆, 𝑉𝜋 𝑠 − 𝑉𝜋
′ 𝑠)



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

𝑉𝑘 for 𝜋0

𝑘 = 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

𝑘 = 1

𝜋𝑘=0

𝜋𝑘=1



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 0

𝑉𝑘 for 𝜋0

𝑘 = 1

0 -2.23 -2.67 -2.71

-2.23 -2.61 -2.71 -2.66

-1.8 -2.71 -2.61 -2.23

-2.71 -2.66 -2.23 0

𝑘 = 2

𝜋𝑘=1

𝜋𝑘=2



Value Iterations Example

1 2 3

4 5 6 7

8 9 10 11

12 13 14

𝑅𝑡 = −1

0 -2.23 -2.67 -2.71

-2.23 -2.61 -2.71 -2.66

-1.8 -2.71 -2.61 -2.23

-2.71 -2.66 -2.23 0

𝑉𝑘 for 𝜋0

𝑘 = 2

0 -5.28 -7.13 -7.65

-5.28 -6.60 -7.18 -7.13

-7.13 -7.17 -6.60 -5.28

-7.65 -7.13 -5.28 0

𝑘 = ∞

𝜋𝑘=2

𝜋𝑘=∞



Q-Learning

For the previous value iteration, we knew ℙ 𝑠′ 𝑠, 𝑎 . What if we didn’t?

We will use Q-Learning!

Q-Learning tells us the value of doing 𝑎 in state 𝑠

𝑄 𝑠𝑡 , 𝑎𝑡 = 𝔼 𝑅𝑡 + 𝛾𝑅𝑡+1 + 𝛾2𝑅𝑡+2 +⋯| 𝑠, 𝑎

We follow a similar iterative approach as value iterations and get:

𝑄 𝑠𝑡
′, 𝑎𝑡

′ ՚𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼 𝑟 𝑠𝑡 + 𝛾max
𝑎

𝑄 𝑠𝑡+1, 𝑎 − 𝑄( 𝑠𝑡 , 𝑎𝑡)

This is off-policy!



Exploration in Q-Learning

With some 0 ≤ 𝜖 ≤ 1 probability we choose to either take a random action at 

any given state or go with the highest 𝑄 𝑠, 𝑎 value 

𝑎 = ቐ
argmax𝑎∈𝐴𝑄 𝑠, 𝑎

random action 𝑎 ∈ 𝐴

𝜖

1 − 𝜖



SARSA   (State – Action – Reward – State – Action)

Alternative to Q-Learning, instead of choosing the best possible action we 

chose the next action according to the policy

𝑄 𝑠𝑡
′, 𝑎𝑡

′ ՚𝑄 𝑠𝑡 , 𝑎𝑡 + 𝛼[𝑟 𝑠𝑡 + 𝛾෍

𝑎

𝜋(𝑎|𝑠𝑡+1)𝑄 𝑠𝑡+1, 𝑎𝑡+1 − 𝑄(𝑠𝑡 , 𝑎𝑡)]

This is on-policy!


