My

.
""""""
.

! f— g

Pl -

L - W

CS 540 Itroduction to Artificial Intelligéﬁce
Reinforcement Learning

Asmit Nayak

UW-Madison
Based on slides by David Silver, Fred Sala, Yingyu Liang and R. Sutton

Unsupervised
Learning

Supervised
Learning

Branches of

Machine
Learning

Machine
Learning

Reinforcement
Learning

.........

What makes
RL different?

No “supervisor”;
only rewards

Time (or,
timesteps)
matters!

Feedback is
delayed

Actions affect the
subsequent
observations/next-
actions

Actions
do nothing
e

down

!

Observations O
1)
Rewards] m

construct of

a R I_ m O d e ‘ ? Environment Agent

Goal: Maximize total reward

Uses of RL in

the world

Computer Science

Neuroscience

Engineering Schi
i

earn
Optima Reward
ontrol N/ Systerny
. ||”“| N
Dpe s ssical/Ope,
are Onditioning
Mathematics :; e

;;b

Psychology

Economics

.........

Fxamples of

RL in wild.

Playing strategy
games like Dota
2. (Open-Al Five)

\YELGE
humanoid robot
walk

Defeat
professional Go
player. Go is the
most challenging
game for an Al.

(Alpha Go)

Fly a RC-
helicopter

A robot learning to walk.

Learning to Walk

via Deep Reinforcement Learning

Submission ID: 60

DeepMind Al Learning to walk.

DeepMind playing Atari Breakout.

Google Deepmind DQN playing

Atari Breakout

Setup:

NVIDIA GTX 690
17-3770K - 16 GB RAM
Ubuntu 16.04 LTS
Google Deepmind DQN

Basic setup:
* Set of states; S (Note: observations € §)
* Set of actions; A

* Information: at time t, stateis s; € S,
reward 1, and the history till then

* Agent makes a choice of action (a;)

Building
based on the information at time t
moving on to state sy 44
an RL
((/) o
Model

Find a map of state-action pairs
to maximize rewards

History & States

Q. What is history? Q. What is state?

Ans: The history is the sequence Ans: State is the information used
of observations, actions, rewards, to determine what happens next
i.e., all observable variables up to

timet

The action taken by agent at t is State is the function of history:
d_etermlned based the history at Se = f(Hy)
time t

States

Environment State: S Agent State: S{*
The private representation Actions The internal
of the environment, used l representation of the
to get the next set of) Observations 0 agent used to predict the
observations and | ' :E next set of actions
rewards ¢ Rl

. Rewards Contains information and

May contain irrelevant
information

is a subset of S7

S¢ = f(H)

Environment Agent

States

The information state (Markov state) contains all the useful information from the
history

Definition:
A state S; is a Markov State iff:
P[St41 | S¢] = PLSeyq | 1) -e) St

 “The future is independent of the past given the present”
* Once the state is known, history can be discarded

« S{ is Markov iff it contains all the necessary infos

e S/ is Markov; H; is Markov

Markov States

P(S; = $11S¢-1 =51, S¢-2 = §3) = 0.2
P(St — 51|St_1 — Sl' St—Z — Sl) = 0.2
P(S; = S3lSt-1 = S2,S¢—2 = 51) = 0.6

P(S; = S31S¢-1 = S2,S¢-2 = 53) = 0.6

O

0.3

—

0.6 0.5

0.2

Minions Example

e
@ Sy Y .) '

* What if S/ = last 3 items of the sequence?
* Whatif S§ = count of lights, bulbs and levers?

 What if S/ = exact sequence?

Markov Decision Process

Given,
1. Set of States: S, and a set of Actions: A
2. Markov State Transitions model: P(s;4+1 | ¢, a;)

3. Reward functions: r(s;)

Find the optimal policy: m(s;): S — A

RL Agent

RL Agent has one or more of the following features:
* Policy: Agent’s behavior function (mapping of states and actions)
e Value Function: How good a state and/or action is

* Model: Agent’s representation of the environment

Policy

* Policy: Agent’s behavior function

* It’s a mapping from states to actions

* Deterministic Policy: a = m(s)

 Stochastic Policy: m(s|la) = P|4A; = a | S; = s]

» Good for exploration

Value Function

* Predicts the future rewards from a state, for a given policy

* Used to evaluate how good/bad a state is

* |s used to select between actions.

T
Vn(st) — thtT(St) = E;[R¢ + YRt41 + VZRt+2 + -]

Model

* Predicts the environment would do next

e [P predicts the next state

R predicts the immediate rewards

?sa;’ = P[S;41 =5'[St = 5,4 = a]
R = E[Rt11 | St = s,4; = q]

Maze Example:

e Reward = -1 per timestep
* Actions=N,EW.,S

e States = Agent’s location

Start

End

Maze Example:

Arrows represent the policy
m(s) at each state s

Maze Example:

Maze Example:

Values represent V. (s) for
each state s following policy 7.

Value Function = Policy

Value Function:

V.(s;) = Z;t’"(st) ... but this doesn’t converge!

Discounted Rewards: 0<y <1

Ve(50) = (50 + Y (5e41) + Y27 (Se42) + o =) ¥17(se)
t=0

Value Function = Policy

So now that we have a value function V. for policy T how do we get the
optimal policy?

Let’s the optimal policy be ™ and its corresponding value function be IV'*

So, what will be the expected value of an action for an agent be?

z P[St41 = s'ISe = 5,4, = a]V*(s")
/ ' T
Transition
Probability

Expected
Rewards

All possible
states

Value Function = Policy

Therefore, the optimal policy would be:

n*(s) = argmax, 2 P[S;11 =5'|S; =5,4; = alV*(s)
S’

BUT!!

We defined V™ in terms of T*

Value Function = Policy

How do we get v™ then?

Ve(0) = T(50) + Y7 (Stn) + V27 (Sea2) + =) ¥0r(se)
t=0

= Ve(s) =) m(als)) Plsesr,7lse allr +yVe(ses)

a St+1,7

s VH(s) = 2 r(als) z Pls’,r|s, allr + yV;(s")] (Bellman’s Equation)

a

Value Iterations

We know:
* 7(s) and transition probabilities IP[s’|s, a]
e V™ satisfies the Bellman equation, as it’s recursive

* Therefore, we will use the above property and start with V/,(s) = 0, and
update the value per-iteration as:

Visr(s) =) m(als) Y Pls',rls, allr + yVe(s)]

a

Value Iterations Example

1

2

5

6

9

10

11

12

13

14

Grid World

A

«—

v

Actions

Rt = _1
on all transitions

y =0.9
a=1

My = Pla] = 0.25V a

For terminal states s’ = s

Value Iterations Example

k=0 k=1
‘ ‘) 1 2 3 0 0 0 0 0 -1 -1 -1
4 5 6 7
R = -1 0 0 0 0 1 1 1 1
8 9 10 11
V., form
k 0112 |13 |14 0 0 0 0 1 1 1 1
0 0 0 0 1 1 -1 0
o [-a675| 19 | 19 |V, =3(0.25%(—1+0.9%(—1))) +0.25*(—1+0) = —1.675
1675 | -9 | -9 | 19 || =4(0.25% (=14 0.9x (—1))) =—19
k=2
-1.9 -1.9 -1.9 -1.675
-1.9 -1.9 -1.675 0

Value Iterations Example

k=0 k=1 k=2
<_I_, 1 2 3 0 0 0 0 0 1 1 -1 0 -1.675 | -1.9 -1.9
4 5 6 7
Rt = —1 0 0 0 0 -1 -1 -1 -1 -1.675 | -1.9 -1.9 -1.9
8 9 10 | 11
V, for
12 (13 |14 0 0 0 0 -1 1 1 -1 1.9 -1.9 -1.9 | -1.675
(] (] 0 0 -1 1 1 0 1.9 -1.9 | -1.675 0
0 223 | -2.67 | -2.71
Vie = 0.25% (=1 + 0.9 * (—1.675))
L3 223 | -2.61 | -2.71 | -2.66 10.25 * (_1 109 % (_1_9))
+0.25 x (=14 0.9 x (—=1.9))
-1.8 -2.71 -2.61 -2.23 _|_025 * (_1 + 0) = —223
271 | -2.66 | -2.23 0

Value Iterations Example

1 2 3 0 0 0 0 0 -1 -1 -1 0 -2.23 -2.67 -2.71

R = -1 0 0 0 0 -1 -1 -1 -1 -2.23 | -2.61 | -2.71 | -2.66

V, for
12 |13 (14 0 0 0 0 -1 -1 -1 -1 -1.8 271 | -2.61 | -2.23
0 0 0 0 -1 -1 -1 0 271 | -2.66 | -2.23 0
0 528 | -7.13 | -7.65

-5.28 -6.60 -7.18 -7.13

-7.13 -7.17 -6.60 -5.28

-7.65 -7.13 -5.28 0

Policy Iterations

For a policy m:
* Evaluate V/;(s)
« Updatemr «— 1’

* Keep updatingtill A — 0, where A = max(4, V. (s) — V/(s))

Value Iterations Example

A

«——

A 4
A

«——

Y

A

[
»

[
»

A

<
<

A

<
<

\ 4
A

<
<

A 4

A

Y

A

«—>

A

«—>

\ 4
A

A 4

A

Y

[
»

[
»

A

A

A 4
A

A\ 4

A

A\ 4

<
<

\4

A

\ 4

\4

A

A 4

1 2 3 0 0 0 0
4 5 6 7
0 0 0 0
8 9 10 11
12 13 14 0 0 0 0
0 0 0 0
0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

A

\ 4
A

A 4

\4

— |—>

A

\4

Value Iterations Example

A

\ 4

A

\ 4

A

A\ 4

\4

A

A 4

A

\ 4
A

[
»

A 4

\4

— | |——

—t—|——| —>

k=1
‘ ‘) 1 2 3 0 -1 -1 -1
4 5 6 7
Rt = —1 -1 -1 -1 -1
8 9 10 11
V, for
12 |13 |14 1 1 1 1
-1 -1 -1 0
0 -2.23 -2.67 -2.71
-2.23 -2.61 -2.71 -2.66
k=2
-1.8 -2.71 -2.61 -2.23
271 | 266 | 223 | 0

< > —>
v
«— |— |« I >
T A A
\4 l
T A
\ 4 v l
) I

Value Iterations Example

<—<—:I:
T A
T A

v l
:I=—>—>

«— |e—

A

A

k =
1 2 3 0 223 | -2.67 | -2.71
4 5 6 7
223 | -261 | -2.71 | -2.66
8 9 10 | 11
12 (13 |14 -1.8 271 | -2.61 | -2.23
271 | -2.66 | -2.23 0
0 -5.28 | -7.13 | -7.65
528 | -6.60 | -7.18 | -7.13
-7.13 | -7.17 | -6.60 | -5.28
-7.65 | -7.13 | -5.28 0

—

\ 4

k=0

Q-Learning

For the previous value iteration, we knew P[s’|s, a]. What if we didn’t?

We will use Q-Learning!

Q-Learning tells us the value of doing a in state s

Q(sy, ar) = E[Ry + YRey1 + Y*Riyp + | 5,4l

We follow a similar iterative approach as value iterations and get:

Q(st,ap) « Q(se,a0) + a|r(se) +ymax Q(se1,@) — Qe ar)|

This is off-policy!

Exploration in Q-Learning

With some 0 < € < 1 probability we choose to either take a random action at
any given state or go with the highest Q(s, a) value

(argmax,e,0(s,a) €

-random actiona € A 1—¢€

SARSA (State — Action — Reward — State — Action)

Alternative to Q-Learning, instead of choosing the best possible action we
chose the next action according to the policy

Q(se ar) « Q(sg,ar) + afr(sy) + Vz T(a|se+1)Q(Se41, Ary1) — Q(St, ar)]

This is on-policy!

