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What makes
RL different?

No “supervisor”;
only rewards

Time (or,
timesteps)
matters!

Feedback is
delayed

Actions affect the
subsequent
observations/next-
actions
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Goal: Maximize total reward




Uses of RL in

the world
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Fxamples of

RL in wild.

Playing strategy
games like Dota
2. (Open-Al Five)

\YELGE
humanoid robot
walk

Defeat
professional Go
player. Go is the
most challenging
game for an Al.

(Alpha Go)

Fly a RC-
helicopter




A robot learning to walk.

Learning to Walk

via Deep Reinforcement Learning

Submission ID: 60




DeepMind Al Learning to walk.




DeepMind playing Atari Breakout.

Google Deepmind DQN playing

Atari Breakout

Setup:

NVIDIA GTX 690
17-3770K - 16 GB RAM
Ubuntu 16.04 LTS
Google Deepmind DQN




Basic setup:
* Set of states; S (Note: observations € §)
* Set of actions; A

* Information: at time t, stateis s; € S,
reward 1, and the history till then

* Agent makes a choice of action (a;)

Building
based on the information at time t
moving on to state sy 44
an RL
(( /) o
Model

Find a map of state-action pairs
to maximize rewards




History & States

Q. What is history? Q. What is state?

Ans: The history is the sequence Ans: State is the information used
of observations, actions, rewards, to determine what happens next
i.e., all observable variables up to

timet

The action taken by agent at t is State is the function of history:
d_etermlned based the history at Se = f(Hy)
time t



States

Environment State: S Agent State: S{*
The private representation Actions The internal
of the environment, used l representation of the
to get the next set of ) Observations 0 agent used to predict the
observations and | ' :E next set of actions
rewards ¢ Rl

. Rewards Contains information and

May contain irrelevant
information

is a subset of S7

S¢ = f(H)

Environment Agent



States

The information state (Markov state) contains all the useful information from the
history

Definition:
A state S; is a Markov State iff:
P[St41 | S¢] = PLSeyq | 1) -e) St

 “The future is independent of the past given the present”
* Once the state is known, history can be discarded

« S{ is Markov iff it contains all the necessary infos

e S/ is Markov; H; is Markov



Markov States

P(S; = $11S¢-1 =51, S¢-2 = §3) = 0.2
P(St — 51|St_1 — Sl' St—Z — Sl) = 0.2
P(S; = S3lSt-1 = S2,S¢—2 = 51) = 0.6

P(S; = S31S¢-1 = S2,S¢-2 = 53) = 0.6

O

0.3

—

0.6 0.5

0.2



Minions Example

e
@ Sy Y . ) '

* What if S/ = last 3 items of the sequence?
* Whatif S§ = count of lights, bulbs and levers?

 What if S/ = exact sequence?



Markov Decision Process

Given,
1. Set of States: S, and a set of Actions: A
2. Markov State Transitions model: P(s;4+1 | ¢, a;)

3. Reward functions: r(s;)

Find the optimal policy: m(s;): S — A



RL Agent

RL Agent has one or more of the following features:
* Policy: Agent’s behavior function (mapping of states and actions)
e Value Function: How good a state and/or action is

* Model: Agent’s representation of the environment



Policy

* Policy: Agent’s behavior function

* It’s a mapping from states to actions

* Deterministic Policy: a = m(s)

 Stochastic Policy: m(s|la) = P|4A; = a | S; = s]

» Good for exploration



Value Function

* Predicts the future rewards from a state, for a given policy

* Used to evaluate how good/bad a state is

* |s used to select between actions.

T
Vn(st) — thtT(St) = E;[R¢ + YRt41 + VZRt+2 + -]



Model

* Predicts the environment would do next

e [P predicts the next state

R predicts the immediate rewards

?sa;’ = P[S;41 =5'[St = 5,4 = a]
R = E[Rt11 | St = s,4; = q]



Maze Example:

e Reward = -1 per timestep
* Actions=N,EW.,S

e States = Agent’s location

Start

End



Maze Example:

Arrows represent the policy
m(s) at each state s




Maze Example:




Maze Example:

Values represent V. (s) for
each state s following policy 7.




Value Function = Policy

Value Function:

V.(s;) = Z;t’"(st) ... but this doesn’t converge!

Discounted Rewards: 0<y <1

Ve(50) = (50 + Y (5e41) + Y27 (Se42) + o = ) ¥17(se)
t=0



Value Function = Policy

So now that we have a value function V. for policy T how do we get the
optimal policy?

Let’s the optimal policy be ™ and its corresponding value function be IV'*

So, what will be the expected value of an action for an agent be?

z P[St41 = s'ISe = 5,4, = a]V*(s")
/ ' T
Transition
Probability

Expected
Rewards

All possible
states



Value Function = Policy

Therefore, the optimal policy would be:

n*(s) = argmax, 2 P[S;11 =5'|S; =5,4; = alV*(s)
S’

BUT!!

We defined V™ in terms of T*




Value Function = Policy

How do we get v™ then?

Ve(0) = T(50) + Y7 (Stn) + V27 (Sea2) + = ) ¥0r(se)
t=0

= Ve(s) = ) m(als) ) Plsesr,7lse allr +yVe(ses)

a St+1,7

s VH(s) = 2 r(als) z Pls’,r|s, allr + yV;(s")] (Bellman’s Equation)

a




Value Iterations

We know:
* 7(s) and transition probabilities IP[s’|s, a]
e V™ satisfies the Bellman equation, as it’s recursive

* Therefore, we will use the above property and start with V/,(s) = 0, and
update the value per-iteration as:

Visr(s) = ) m(als) Y Pls',rls, allr + yVe(s)]

a



Value Iterations Example

1

2

5

6

9

10

11

12

13

14

Grid World

A

«—

v

Actions

Rt = _1
on all transitions

y =0.9
a=1

My = Pla] = 0.25V a

For terminal states s’ = s



Value Iterations Example

k=0 k=1
‘ ‘ ) 1 2 3 0 0 0 0 0 -1 -1 -1
4 5 6 7
R = -1 0 0 0 0 1 1 1 1
8 9 10 11
V., form
k 0112 |13 |14 0 0 0 0 1 1 1 1
0 0 0 0 1 1 -1 0
o [-a675| 19 | 19 |V, =3(0.25%(—1+0.9%(—1))) +0.25*(—1+0) = —1.675
1675 | -9 | -9 | 19 || =4(0.25% (=14 0.9x (—1))) =—19
k=2
-1.9 -1.9 -1.9 -1.675
-1.9 -1.9 -1.675 0




Value Iterations Example

k=0 k=1 k=2
<_I_, 1 2 3 0 0 0 0 0 1 1 -1 0 -1.675 | -1.9 -1.9
4 5 6 7
Rt = —1 0 0 0 0 -1 -1 -1 -1 -1.675 | -1.9 -1.9 -1.9
8 9 10 | 11
V, for
12 (13 |14 0 0 0 0 -1 1 1 -1 1.9 -1.9 -1.9 | -1.675
(] (] 0 0 -1 1 1 0 1.9 -1.9 | -1.675 0
0 223 | -2.67 | -2.71
Vie = 0.25% (=1 + 0.9 * (—1.675))
L3 223 | -2.61 | -2.71 | -2.66 10.25 * (_1 109 % (_1_9))
+0.25 x (=14 0.9 x (—=1.9))
-1.8 -2.71 -2.61 -2.23 _|_025 * (_1 + 0) = —223
271 | -2.66 | -2.23 0




Value Iterations Example

1 2 3 0 0 0 0 0 -1 -1 -1 0 -2.23 -2.67 -2.71

R = -1 0 0 0 0 -1 -1 -1 -1 -2.23 | -2.61 | -2.71 | -2.66

V, for
12 |13 (14 0 0 0 0 -1 -1 -1 -1 -1.8 271 | -2.61 | -2.23
0 0 0 0 -1 -1 -1 0 271 | -2.66 | -2.23 0
0 528 | -7.13 | -7.65

-5.28 -6.60 -7.18 -7.13

-7.13 -7.17 -6.60 -5.28

-7.65 -7.13 -5.28 0




Policy Iterations

For a policy m:
* Evaluate V/;(s)
« Updatemr «— 1’

* Keep updatingtill A — 0, where A = max(4, V. (s) — V/(s))



Value Iterations Example
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Value Iterations Example
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k=1
‘ ‘ ) 1 2 3 0 -1 -1 -1
4 5 6 7
Rt = —1 -1 -1 -1 -1
8 9 10 11
V, for
12 |13 |14 1 1 1 1
-1 -1 -1 0
0 -2.23 -2.67 -2.71
-2.23 -2.61 -2.71 -2.66
k=2
-1.8 -2.71 -2.61 -2.23
271 | 266 | 223 | 0
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Value Iterations Example

<—<—:I:
T A
T A

v l
:I=—>—>
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A

A

k =
1 2 3 0 223 | -2.67 | -2.71
4 5 6 7
223 | -261 | -2.71 | -2.66
8 9 10 | 11
12 (13 |14 -1.8 271 | -2.61 | -2.23
271 | -2.66 | -2.23 0
0 -5.28 | -7.13 | -7.65
528 | -6.60 | -7.18 | -7.13
-7.13 | -7.17 | -6.60 | -5.28
-7.65 | -7.13 | -5.28 0

—

\ 4

k=0



Q-Learning

For the previous value iteration, we knew P[s’|s, a]. What if we didn’t?

We will use Q-Learning!

Q-Learning tells us the value of doing a in state s

Q(sy, ar) = E[Ry + YRey1 + Y*Riyp + | 5,4l

We follow a similar iterative approach as value iterations and get:

Q(st,ap) « Q(se,a0) + a|r(se) +ymax Q(se1,@) — Qe ar)|

This is off-policy!



Exploration in Q-Learning

With some 0 < € < 1 probability we choose to either take a random action at
any given state or go with the highest Q(s, a) value

( argmax,e,0(s,a) €

-random actiona € A 1—¢€



SARSA (State — Action — Reward — State — Action)

Alternative to Q-Learning, instead of choosing the best possible action we
chose the next action according to the policy

Q(se ar) « Q(sg,ar) + afr(sy) + Vz T(a|se+1)Q(Se41, Ary1) — Q(St, ar)]

This is on-policy!



