CS540 Introduction to Artificial Intelligence Lecture 15

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 27, 2022

Midterm Admin

- The midterm is:
- A : Too Easy
- B : Easy
- *C* : Just right
- D : Hard
- E: Too Hard

Midterm Admin

- Stats for ID = test are posted, fix bugs in auto-grading, then post grades on Canvas.
- No curve for regular version midterm, may drop one question from make up midterm.
- Go over some midterm questions on Saturday, join if you have questions.
- Grades for <u>M1 to M7, P1, D1 to D3</u> will be updated tomorrow night (last chance to submit these).
- Final exam is not cumulative, but some topics are still relavent (gradient descent, probability theory, reinforcement learning).

Unsupervised Learning

Motivation

Unsupervised Learning Applications Motivation

Description

- Start with each instance as a cluster.
- Merge clusters that are closest to each other.
- Result in a binary tree with close clusters as children.

Hierarchical Clustering Diagram

Description

Single Linkage Distance

 Usually, the distance between two clusters is measured by the single-linkage distance.

$$d\left(C_{k},C_{k'}\right)=\min\left\{d\left(x_{i},x_{i'}\right):x_{i}\in C_{k},x_{i'}\in C_{k'}\right\}$$

$$\bigcap_{M\in Aharran}\left\{d\left(x_{i},x_{i'}\right):x_{i}\in C_{k},x_{i'}\in C_{k'}\right\}$$

 It is the shortest distance from any instance in one cluster to any instance in the other cluster.

Complete Linkage Distance

Definition

Another measure is complete-linkage distance,

$$d(C_k, C_{k'}) = \max \{d(x_i, x_{i'}) : x_i \in C_k, x_{i'} \in C_{k'}\}$$

 It is the longest distance from any instance in one cluster to any instance in the other cluster.

Average Linkage Distance Diagram

Definition

Another measure is average-linkage distance.

$$d(C_k, C_{k'}) = \frac{1}{|C_k| |C_{k'}|} \sum_{x_i \in C_k, x_{i'} \in C_{k'}} d(x_i, x_{i'})$$

 It is the average distance from any instance in one cluster to any instance in the other cluster.

Quiz

• Given three clusters $A = \{0, 2, 6\}$, $B = \{3, 9\}$, $C = \{11\}$. What is the next iteration of hierarchical clustering with Euclidean distance and single and complete linkage?

Quiz

- Given three clusters $A = \{0, 1\}$, $B = \{4, 6\}$, $C = \{8\}$. What is the next iteration of hierarchical clustering with Euclidean distance and complete linkage?
- \bullet A: Merge A and B.
- B : Merge A and C.
- \bullet C: Merge B and C.
- D: I don't understand.

Quiz

Spring 2018 Midterm Q5

- Q3
- Given three clusters A = {0,1}, B = {4,6}, C = {8}. What is the next iteration of hierarchical clustering with Euclidean distance and single linkage?
- \bullet A: Merge A and B.
- B : Merge A and C.
- \circ C : Merge B and C.
- D: I don't understand.

 Given the distance between the clusters so far. Which pair of clusters will be merged using single linkage.

Hierarchical Clustering 4, Diagram

Complee

Quiz

A

B

1075

2054

996

B

CD

1075

2054

1307

PA M8

_	Α	В	C	D	Ε	
Α	0	1075	2013	2054	996	
В	1075	0	3272	2687	2037	
С	2013	3272	0	808	1307	
D	2054	2687	808	0	1059	
Ε	996	2037	1307	1059	0	

 Given the distance between the clusters so far. Which pair of clusters will be merged using complete linkage.

_	Α	В	С	D
Α	0	1075	2013	2054
В	1075	0	3272	2687
С	2013	3272	0	808
D	2054	2687	808	0

• E: I don't understand.

Number of Clusters

Discussion

- ullet K can be chosen using prior knowledge about X.
- The algorithm can stop merging as soon as all the between-cluster distances are larger than some fixed *R*.
- The binary tree generated in the process is often called dendrogram, or taxonomy, or a hierarchy of data points.
- An example of a dendrogram is the tree of life in biology.

K Means Clustering

Description

- This is not K Nearest Neighbor.
- Start with random cluster centers.
- Assign each point to its closest center.
- Update all cluster centers as the center of its points.

0000

K Means Clustering Demo

Description

Distortion

Distortion

- Distortion for a point is the distance from the point to its cluster center.
- Total <u>distortion</u> is the sum of distortion for all points.

$$D_{K} = \sum_{i=1}^{n} d\left(x_{i}, c_{k^{\star}(x_{i})}(x_{i})\right)$$

$$k^{\star}(x) = \operatorname*{argmin}_{k=1,2,...K} d\left(x, c_{k}\right)$$

Objective Function Counterexample Definition

Gradient Descent

Definition

 When d is the Euclidean distance. K Means algorithm is the gradient descent when distortion is the objective (cost) function.

$$\frac{\partial}{\partial c_k} \sum_{k=1}^K \sum_{x \in C_k} \|x - c_k\|_2^2 = 0$$

$$\Rightarrow -2 \sum_{x \in C_k} (x - c_k) = 0$$

$$\Rightarrow c_k = \frac{1}{|C_k|} \sum_{x \in C_k} x$$

$$k - means$$

K Means Clustering 1

• Given data $x = \{-1,0\}$ and initial cluster centers $c_1 = 0, c_2 = 1$ what is the initial clusters and what is the initial total distortion (sum of squares without square root)?

$$\frac{\{-1,0\}}{1}, \quad \{2\}$$

$$C'_{1} = -\frac{1}{2}, \quad C'_{2} = 2$$

$$\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} + 0^{2} = -\frac{1}{2}$$

K Means Clustering 2

Q 4

- Given data $x = \{-1, 0, 2\}$ and initial cluster centers $c_1 = 0, c_2 = 5$, what is the initial clusters?
- $A: \{\emptyset\}$ and $\{-1,0,2\}$
- $B: \{-1\}$ and $\{0, 2\}$
- $C: \{-1,0\}$ and $\{2\}$
- $D: \{-1,0,2\}$ and $\{\emptyset\}$
 - E: I don't understand.

total distaction

Total Distortion 2

25

- Given data $x = \{-1, 0, 2\}$ and initial cluster centers $c_1 = 0, c_2 = 5$, what is the initial total distortion (sum of squares without square root)?
- A:2

D:50

• E: I don't understand.

Number of Clusters

Discussion

- There are a few ways to pick the number of clusters K.
- \bullet K can be chosen using prior knowledge about X.
- K can be the one that minimizes distortion? No, when

$$K = n$$
, distortion = 0.

K can be the one that minimizes distortion + regularizer.

$$K^* = \underset{k}{\operatorname{argmin}} \left(\underline{D_k} + \lambda \right) m \cdot k \cdot \log n$$

ullet λ is a fixed constant chosen arbitrarily.

Initial Clusters

Discussion

There are a few ways to initialize the clusters.

G K uniform random points in $\{x_i\}_{i=1}^n$.

Start with C~ UC-1, 1)

1 uniform random point in $\{x_i\}_{i=1}^n$ as $c_1^{(0)}$, then find the farthest point in $\{x_i\}_{i=1}^n$ from $c_1^{(0)}$ as $c_2^{(0)}$, and find the farthest point in $\{x_i\}_{i=1}^n$ from the closer of $c_1^{(0)}$ and $c_2^{(0)}$ as $c_3^{(0)}$, and repeat this K times.

Discussion

- In K means, each instance belong to one cluster with the certainty.
- One continuous version is called the Gaussian mixture model: each instance belongs to one of the clusters with a positive probability.
- The model can be trained using Expectation Maximization Algorithm (EM Algorithm).

Gaussian Mixture Model Demo

Discussion

Summary

Description

- Unsupervised learning:
- Clustering: Hierachical → Start with singleton clusters → Merge closest (single, complete linkage) clusters → Repeat.
- ② Clustering: K-Means → Start with random centers → Find closest center to every point → Update centers → Repeat.
- Oimensionality Reduction: Principal Component Analysis.