Dimensionality Reduction

00000

CS540 Introduction to Artificial Intelligence Lecture 16

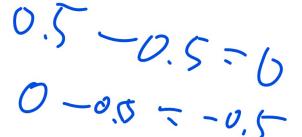
Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 29, 2022

Dark Knight Boat Game

Quiz



Two groups: in person group and Zoom group.

I am in person, -0.5 quiz grade to everyone on Zoom.

I am in person, do nothing.

 $C \cdot I$ am on Zoom, -0.5 quiz grade to everyone in person.

D:I am on Zoom, do nothing.

 If both groups vote to do nothing, both groups will get -0.5 quiz grade.

Sharing Solutions Admin

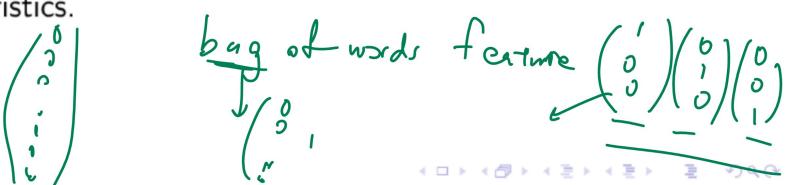
Q2, Q3

- M8 is not announced. P4 too, but you can start.
- For sharing solutions: the important thing is writing clear solutions that help other students with homework and exams.
- Posts after the deadline and exam are not helpful.
- Posts before I cover the topic during the lecture may or may not be helpful: should use the convention in the lectures.
- If you copy another student's solution (without consent), it's considered cheating. First time: warning, second time: talk to the department.

Unsupervised Learning

Motivation

- Supervised learning: $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$.
- Unsupervised learning: $x_1, x_2, ..., x_n$.
- There are a few common tasks without labels.
- Clustering: separate instances into groups.
- Novelty (outlier) detection: find instances that are different.
- Oimensionality reduction: represent each instance with a lower dimensional feature vector while maintaining key characteristics.



High Dimensional Data

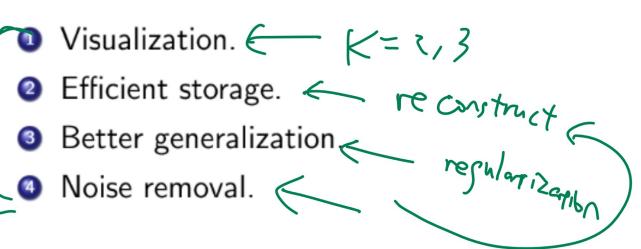
Motivation

- High dimensional data are training set with a lot of features.
- Document classification.
- MEG brain imaging.
- Handwritten digits (or images in general).

Low Dimension Representation

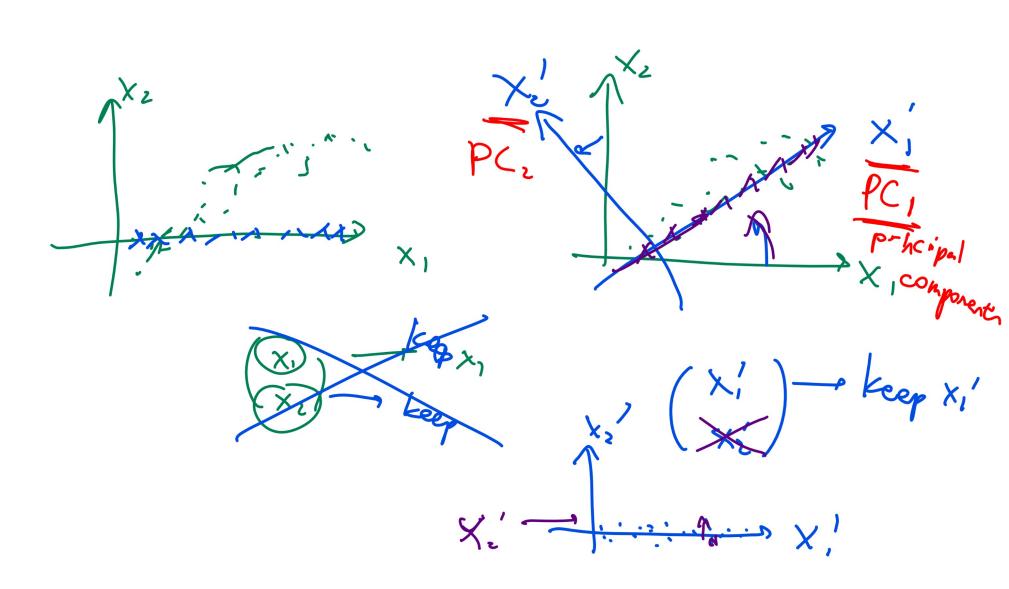
Motivation

 Unsupervised learning techniques are used to find low dimensional representation.



Dimension Reduction Demo

Motivation



Projection

Definition

• The projection of x_i onto a unit vector u_k is the vector in the direction of u_k that is the closest to x_i .

$$\operatorname{proj}_{u_k} x_i = \left(\frac{u_k^T x_i}{u_k^T u_k}\right) u_k = \underline{u_k^T x_i u_k}$$

• The length of the projection of x_i onto a unit vector u_k is $u_k^T x_i$.

$$\text{proj }_{u_k} x_i \big\|_2 = u_k^T x_i$$

Variance

Definition

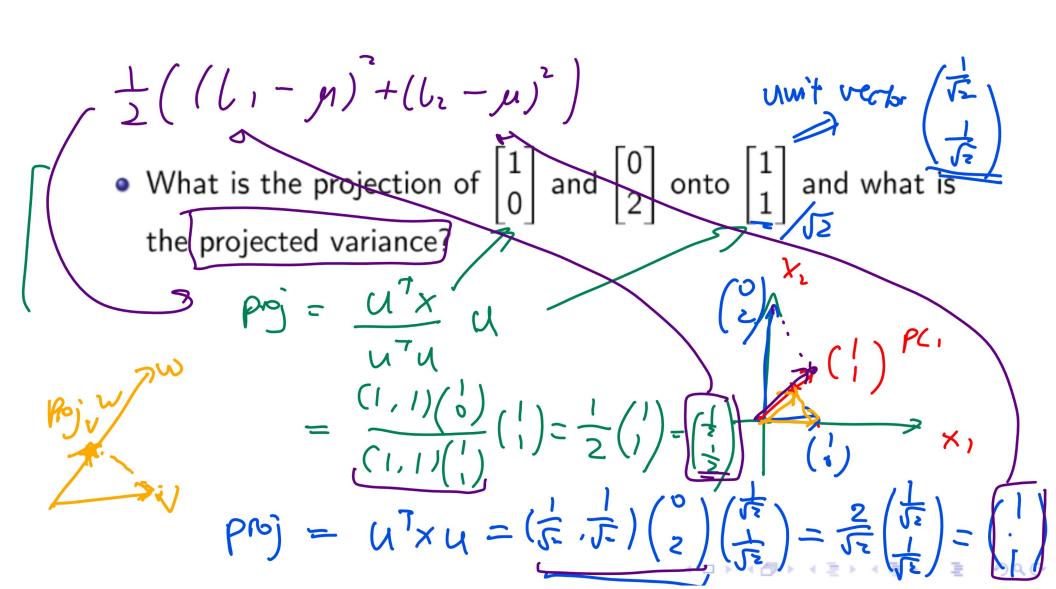
• The sample variance of a data set $\{x_1, x_2, ..., x_n\}$ is the sum of the squared distance from the mean.

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

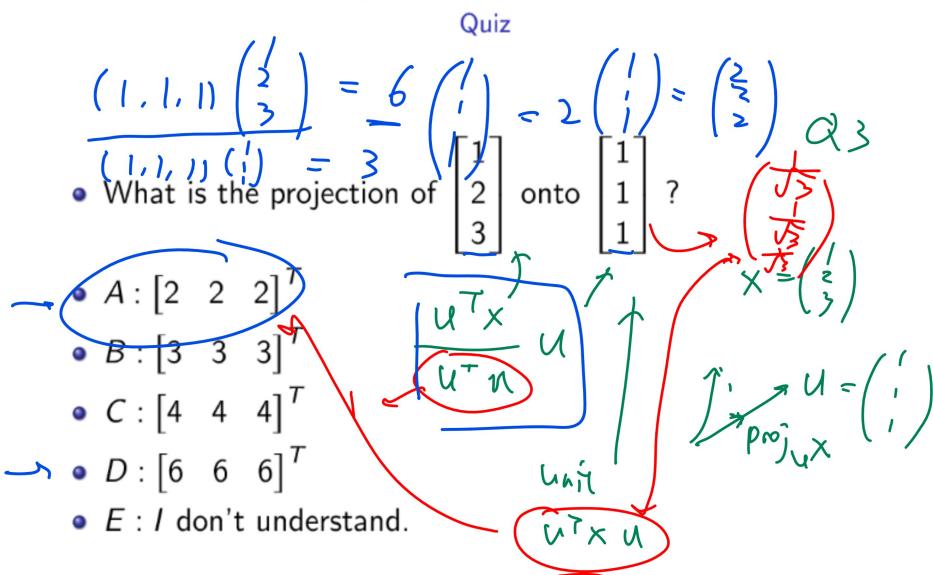
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\hat{\Sigma} = \begin{bmatrix} 1 \\ n-1 \end{bmatrix} \sum_{i=1}^n (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$$

Projection Example 1



Projection Example 3



Projection Example 4 Quiz

What is the projection variance of | 1 | 2 | and | 2 | onto | 1 | ?
3 | 4 | 2 | onto | 1 | ?

• A:0

B: 12

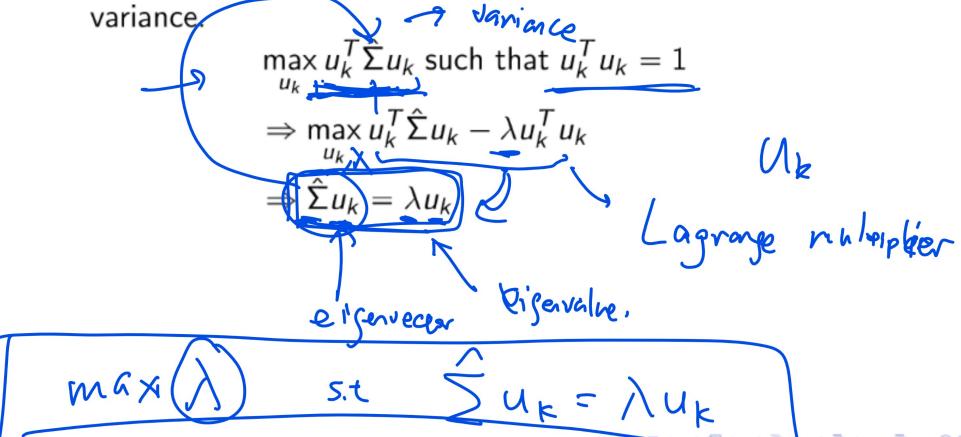
• C: 24

D:48

• E: I don't understand.

Maximum Variance Directions Definition

• The goal is to find the direction that maximizes the projected



Eigenvalue Definition

• The λ represents the projected variance. $u_k^T \hat{\Sigma} u_k = u_k^T \lambda u_k = \lambda$

$$u_k^T \hat{\Sigma} u_k = u_k^T \lambda u_k = \lambda$$

 The larger the variance, the larger the variability in direction u_k . There are m eigenvalues for a symmetric positive semidefinite matrix (for example, X^TX is always symmetric PSD). Order the eigenvectors u_k by the size of their corresponding eigenvalues λ_k .

$$\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_m$$

Eigenvalue Algorithm

Definition

 Solving eigenvalue using the definition (characteristic polynomial) is computationally inefficient.

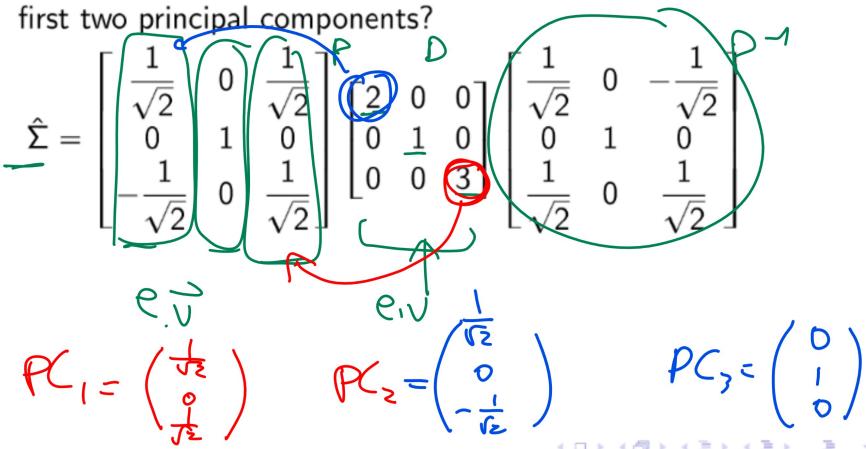
$$(\hat{\Sigma} - \lambda_k I) u_k = 0 \Rightarrow \det(\hat{\Sigma} - \lambda_k I) = 0$$

 There are many fast eigenvalue algorithms that computes the spectral (eigen) decomposition for real symmetric matrices.
 Columns of Q are unit eigenvectors and diagonal elements of D are eigenvalues.

$$\hat{\Sigma} = PDP^{-1}, D$$
 is diagonal $= QDQ^T$, if Q is orthogonal, i.e. $Q^TQ = I$

Spectral Decomposition Example 1

• Given the following spectral decomposition of $\hat{\Sigma}$, what are the



Spectral Decomposition Example 2

• Given the following $\hat{\Sigma}$, what are the first two principal components?

$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

•
$$A:\begin{bmatrix}1\\0\\0\end{bmatrix}$$
, $B:\begin{bmatrix}0\\1\\0\end{bmatrix}$, $C:\begin{bmatrix}0\\0\\1\end{bmatrix}$, $D:\begin{bmatrix}0\\5\\0\end{bmatrix}$, $E:\begin{bmatrix}0\\0\\3\end{bmatrix}$

C₁

C₂

C₃

C₄

C₉

X - min

O₁

O₂

O₃

O₄

O₆

O₇

O₁

O₁

O₁

O₂

O₁

O₂

O₃

O₄

O₆

O₆

O₇

Number of Dimensions

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

• The original feature space is *m* dimensional.

$$(x_{i1}, x_{i2}, ..., x_{im})^T$$

• The new feature space is *K* dimensional.

$$(u_1^T x_i, u_2^T x_i, ..., u_K^T x_i)^T$$

 Other supervised learning algorithms can be applied on the new features.

Eigenface

Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$x_{i} = \sum_{k=1}^{m} \left(u_{k}^{T} x_{i} \right) u_{k} \approx \sum_{k=1}^{K} \left(u_{k}^{T} x_{i} \right) \underline{u_{k}}$$

 Eigenfaces and SVM can be combined to detect or recognize faces.

Reduced Space Example 1 Quiz

• If
$$u_1=\begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}} \end{bmatrix}$$
 and $u_2=\begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\-\frac{1}{\sqrt{2}} \end{bmatrix}$. If one original item is

$$x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
. What is its new representation and the

reconstructed vector using only the two principal components?

Reduced Space Example 1 Diagram Quiz

Reduced Space Example 2

•
$$\hat{\Sigma} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. If one original data is $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. What is the reconstructed vector using only the first two principal

the reconstructed vector using only the first two principal components?

•
$$A: \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$$
, $B: \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$, $C: \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix}$, $D: \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$, $E: I don't understand.$

Autoencoder

Discussion

- A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input m.
- The hidden units form an encoding of the input with reduced dimensionality.

Autoencoder Diagram

Discussion

Kernel PCA

Discussion

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^{T}$$

- The principal components can be found without explicitly computing $\varphi(x_i)$, similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.

Summary

Description

- Unsupervised learning:
- Clustering: Hierachical.
- Clustering: K-Means.
- Oimensionality Reduction: Principal Component Analysis → Find varinaces → Find directions (principal components) with the largest projected variances (eigenvalues) → Find projection onto the principal direction (original points can be reconstructed).