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Dark Knight Boat Game
Quiz
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@ Two groups: in person group and Zoom group.
—@ am in person, -0.5 quiz grade to everyone on Zoom. 1
B JI am in person, do nothing.
| am on Zoom, -0.5 quiz grade to everyone in person.
’T)FI am on Zoom, do nothing. ’)
5

e |f both groups vote to do nothing, both groups will get -0.
quiz grade.
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Sharing Solutions
Admin

all (35

@ M8 is not announced. P4 too, but you can start.=—

@ For sharing solutions: the important thing is writing clear
solutions that help other students with homework and exams.

S—

Posts after the deadline and exam are not helpful.

@ Posts before | cover the topic during the lecture may or may
not be helpful: should use the convention in the lectures.

e If you copy another student’s solution (without consent), it's
considered cheating. First time: warning, second time: talk to
the department.
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Unsupervised Learning

Motivation

e Supervised learning: (x1,y1), (%2, ¥2) , ..., (Xn. ¥n) .
@ Unsupervised learning: x1.x2, ..., X, .
@ [here are a few common tasks without labels.

© Clustering: separate instances into groups.
@ Novelty (outlier) detection: find instances that are different.

© Dimensionality reduction: represent each instance with a lower
dimensional feature vector while maintaining key
characteristics.
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High Dimensional Data

Motivation

e High dimensional data are training set with a lot of features.

© Document classification. —~
——/——

@ MEG brain im@g.
© Handwritten digits (or images in general).J
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Low Dimension Representation

Motivation

@ Unsupervised learning techniques are used to find low
dimensional representation.

q"o Visualization. &— (=<, 3
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Efficient storage. <—_ e Covin
© Better generalization&

tO Noise removal. <\
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Non-linear PCA
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Dimension Reduction Demo

Motivation
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Projection

Definition

Non-linear PCA

@ The projection of x; onto a\unit vector uy

Is the vector in the

direction of uy that is the closest to X;.

-‘

= “k X' v A '
proj ,, Xi = = uk Xj Uy

@ The length of the projection of x; ontp a unit vector Uy 1s

UIZ-X,'.
‘ Proj ukxi ’2 = U X;
—
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Variance

Definition

@ The sample variance of a data set {x1,xo, ..., X,} is the sum of
the squared distance from the mean.
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Projection Example 1
Quiz
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- . - [1 0 H [z
@ What is the projection of and onto and what |

0
the@ojected variance? 5 / J2
- 1 O )_
\ P‘i’) = U X (.* (e)r
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Projection Example 3
Quiz

3)- £ (i) (8) 4,

[, 1)
W g, () = ! A
hat Is the prOJectlon of | 2| onto ? P

S A::2 D

o C:[4 4 4
— e D:[6 6 6
@ E : | don't understand.
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e What is the projection variance of | 2
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Principal Component Analysis
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Projection Example 4

- 48

- [ don't understand.

Quiz

and

onto

Non-linear PCA
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Maximum Variance Directions

Definition

@ The goal is to find the direction that maximizes the projected
variance —? \Iay\.ch

max u, TS uy, such that ul ue =1

“k.&-qn-l-

= max u Ty uy — )\uk Uy
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Eigenvalue

Definition

@ The A represents the projected variance.

ul S = ul Ay = A
-

@ The larger the variance, the larger the variability in direction
uk. There are m eigenvalues for a symmetric positive
semidefinite matrix (for example, X' X is always symmetric
PSD). Order the eigenvectors u, by the size of their
corresponding eigenvalues A

\ALZ N2> > Am |
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Eigenvalue Algorithm

Definition

@ Solving eigenvalue using the definition (characteristic
polynomial) is computationally inefficient.

()":—/\k/)uﬁoﬁ det (i—)\k/) — 0

@ There are many fast eigenvalue algorithms that computes the
spectral (eigen) decomposition for real symmetric matrices.
Columns of @ are unit eigenvectors and diagonal elements of
D are eigenvalues.

S =PDP ' Dis diagonal
= QDQ', if Q is orthogonal, i.e. QT Q = I

ear PCA
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Spectral Decomposition Example 1
Quiz

@ Given the following spectral decomposition of 5, what are the
first two principal components?

13/, ny D
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Spectral Decomposition Example 2
Quiz

@ Given the following 5, what are the first two principal

components?
1 0 0
=10 5 0
0 0 3
1 0| 0| 0 0
e A:|0| ,B: 1] ,C:|0|.,D:|5]| ,E |0 . G, C,
0 0 1 0 3 T
_ ] - - - - - - o
‘ Cl C\ C3 2 q' 6?
x—-wsn X2 [ l q} i J
—. oM © 0. . O
AAX = ki 01¢ O-i Y %4 5l
( <)‘<f
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Number of Dimensions

Discussion

| WL, R é
(0/5 - m“‘(_‘;‘_’\:?i)* [OX ~x(Q,X) Tt 5o X
P

=1

ToX w(d )\ 4o

@ There are a few ways to choose the num}sir of pringipal
components K. [0‘1’(( 7~

@ K can be selected given prior knowledge or requirement.

@ K can be the number of non-zero eigenvalues.

@ K can be the number of eigenvalues that are large (larger
than some threshold).
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Reduced Feature Space

Discussion

@ The original feature space is m dimensional.
T
(X1, X2, -+ Xim)

@ The new feature space is K dimensional.

.
g iF T
(ul Xiy Uy Xiyouey qu,-)

@ Other supervised learning algorithms can be applied on the
new features.
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Eigenface

Discussion

e Eigenfaces are eigenvectors of face images (pixel intensities or
HOG features).

e Every face can be written as a linear combination of
eigenfaces. The coefficients determine specific faces.

e Eigenfaces and SVM can be combined to detect or recognize
faces.
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Reduced Space Example 1

1
V2
e lfuy =1 0 | and p =
1
V2

Quiz

L
V2
0

1

L %2

. If one original item is

x = | 2| . What is its new representation and the

reconstructed vector using only the two principal components?
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Reduced Space Example 1 Diagram
Quiz
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Reduced Space Example 2
Quiz

ear PCA

1 0 0] 1
ey =10 5 0. Ifone original datais x = [ 2| . What is
0 0 3 3
the reconstructed vector using only the first two principal
components?
(1| [ 2] [0 ] [2 ]
e A: |2 ,B: |3 ,C:[2|,D:|3]|,E:|don't understand.
0 0 3 (L |
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Autoencoder

Discussion

@ A multi-layer neural network with the same input and output
y; = X; Is called an autoencoder.

@ The hidden layers have fewer units than the dimension of the
iInput m.

@ The hidden units form an encoding of the input with reduced
dimensionality.
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Autoencoder Diagram

Discussion
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Discussion

@ A kernel can be applied before finding the principal
components.

1
n—1

S =

Y o))"
=1

@ The principal components can be found without explicitly
computing ¢ (x;), similar to the kernel trick for support vector
machines.

@ Kernel PCA is a non-linear dimensionality reduction method.
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Summary

Description

Unsupervised learning:

Clustering: Hierachical.

Clustering: K-Means.

©00

Dimensionality Reduction: Principal Component Analysis —
Find varinaces — Find directions (principal components) with
the largest projected variances (eigenvalues) — Find
projection onto the principal direction (original points can be
reconstructed).





