CS540 Introduction to Artificial Intelligence Lecture 16

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 27, 2022

Random Choice 1

Random Choice 2

Random Choice 3

Unsupervised Learning Motivation

High Dimensional Data

- High dimensional data are training set with a lot of features.
- Document classification.
- MEG brain imaging.
- Handwritten digits (or images in general).

Low Dimension Representation

- Unsupervised learning techniques are used to find low dimensional representation.
- Visualization.
- ② Efficient storage.
- Better generalization.
- Noise removal.

Dimension Reduction Demo

Projection Definition

• The projection of x_i onto a unit vector u_k is the vector in the direction of u_k that is the closest to x_i .

$$\operatorname{proj}_{u_k} x_i = \left(\frac{u_k^T x_i}{u_k^T u_k}\right) u_k = u_k^T x_i u_k$$

• The length of the projection of x_i onto a unit vector u_k is $u_k^T x_i$.

$$\|\operatorname{proj}_{u_k} x_i\|_2 = u_k^T x_i$$

Variance Definition

• The sample variance of a data set $\{x_1, x_2, ..., x_n\}$ is the sum of the squared distance from the mean.

$$X = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$$

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \hat{\mu}) (x_i - \hat{\mu})^T$$

Projection Example 1

Projection Example 3 Quiz

Projection Example 4

Maximum Variance Directions Definition

 The goal is to find the direction that maximizes the projected variance.

$$\begin{aligned} & \max_{u_k} u_k^T \hat{\Sigma} u_k \text{ such that } u_k^T u_k = 1 \\ & \Rightarrow \max_{u_k} u_k^T \hat{\Sigma} u_k - \lambda u_k^T u_k \\ & \Rightarrow \hat{\Sigma} u_k = \lambda u_k \end{aligned}$$

Eigenvalue Definition

ullet The λ represents the projected variance.

$$u_k^T \hat{\Sigma} u_k = u_k^T \lambda u_k = \lambda$$

• The larger the variance, the larger the variability in direction u_k . There are m eigenvalues for a symmetric positive semidefinite matrix (for example, X^TX is always symmetric PSD). Order the eigenvectors u_k by the size of their corresponding eigenvalues λ_k .

$$\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_m$$

Eigenvalue Algorithm Definition

• Solving eigenvalue using the definition (characteristic polynomial) is computationally inefficient.

$$(\hat{\Sigma} - \lambda_k I) u_k = 0 \Rightarrow \det (\hat{\Sigma} - \lambda_k I) = 0$$

 There are many fast eigenvalue algorithms that computes the spectral (eigen) decomposition for real symmetric matrices.
 Columns of Q are unit eigenvectors and diagonal elements of D are eigenvalues.

$$\hat{\Sigma} = PDP^{-1}, D$$
 is diagonal $= QDQ^{T}$, if Q is orthogonal, i.e. $Q^{T}Q = I$

Spectral Decomposition Example 1

Spectral Decomposition Example 2

Number of Dimensions

Discussion

- There are a few ways to choose the number of principal components K.
- K can be selected given prior knowledge or requirement.
- K can be the number of non-zero eigenvalues.
- K can be the number of eigenvalues that are large (larger than some threshold).

Reduced Feature Space

Discussion

• The original feature space is *m* dimensional.

$$(x_{i1}, x_{i2}, ..., x_{im})^T$$

• The new feature space is K dimensional.

$$\left(u_1^T x_i, u_2^T x_i, ..., u_K^T x_i\right)^T$$

 Other supervised learning algorithms can be applied on the new features.

Eigenface Discussion

- Eigenfaces are eigenvectors of face images (pixel intensities or HOG features).
- Every face can be written as a linear combination of eigenfaces. The coefficients determine specific faces.

$$x_i = \sum_{k=1}^m \left(u_k^T x_i \right) u_k \approx \sum_{k=1}^K \left(u_k^T x_i \right) u_k$$

 Eigenfaces and SVM can be combined to detect or recognize faces.

Reduced Space Example 1

Reduced Space Example 1 Diagram Quiz

Reduced Space Example 2

Autoencoder

Discussion

- A multi-layer neural network with the same input and output $y_i = x_i$ is called an autoencoder.
- The hidden layers have fewer units than the dimension of the input *m*.
- The hidden units form an encoding of the input with reduced dimensionality.

Autoencoder Diagram

Discussion

Kernel PCA

Discussion

 A kernel can be applied before finding the principal components.

$$\hat{\Sigma} = \frac{1}{n-1} \sum_{i=1}^{n} \varphi(x_i) \varphi(x_i)^{T}$$

- The principal components can be found without explicitly computing $\varphi(x_i)$, similar to the kernel trick for support vector machines.
- Kernel PCA is a non-linear dimensionality reduction method.

Summary Description