CS540 Introduction to Artificial Intelligence Lecture 17

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 2, 2022

5

Bridge and Torch Game

Motivation

 Four people with one flashlight (torch) want to go across a river. The bridge can hold two people at a time, and they must cross with the flashlight. The time it takes for each person to cross the river:

Α	В	С	D
1	2	4	5

What is the minimum total time required for everyone to cross

the river?

• A: 10, B: 11, C: 12, D: 13, E: 14

Due Dates and Grades Admin

- Next Monday: M8, M9, P4
 Next, next Monday: M10, M11, P5
- Next, next Thursday and Friday: exams

Bridge and Torch Game States

Motivation

Search Problem Applications

Motivation

- Puzzles and games.
- Navigation: route finding.
- Motion planning.
- Scheduling.

BR

Wolf, Sheep, Cabbage Example

Motivation

8 Puzzle Example

Motivation

Sizes of State Space

Motivation

• Tic Tac Toe: 10³
• Checkers: 10²⁰
• Chess: 10⁵⁰
• Go: 10¹⁷⁰

Water Jugs Example Definition

Performance

Definition

- A search strategy is complete if it finds at least one solution.
- A search strategy is optimal if it finds the optimal solution.
- For uninformed search, the costs are assumed to be 1 for all edges c=1.

Complexity

Definition

- The time complexity of a search strategy is the worst case maximum number of vertices expanded.
- The space complexity of a search strategy is the worst case maximum number of states stored in the frontier at a single time.
- Notation: the goals are d edges away from the initial state.
 This means assuming a constant cost of 1, the optimal solution has cost d. The maximum depth of the graph is D.
- Notation: the branching factor is b, the maximum number of actions associated with a state.

$$b = \max_{s \in V} \left| s'\left(s\right) \right|$$

Breadth First Search

Description

- Use Queue (FIFO) for the frontier.
- Remove from the front, add to the back.

BFS Example 1

Quiz

BFS Example 2

Quiz

• Suppose the states are integers between 1 and $2^{10} = 1024$.

The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many 1 5

B : 11

• C:12

D:1023

2.5

Court 5001 (tested being expanded

BFS Example 3

• Suppose the states are integers between 1 and $2^{10} - 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a BFS search?

Breadth First Search Performance

Discussion

BH

Querre

- BFS is complete.
 BFS is optimal with c = 1.

Breadth First Search Complexity

death D

last vertex at depth d.

rode/state

$$T = b + b^2 + \dots + b^d$$

 Space complexity: the worst case is storing all vertices at depth d is in the frontier.

BF

Queur

Depth First Search

Description

- Use Stack (LIFO) for the frontier.
- Remove from the front, add to the front.

DFS Example 1 Quiz

Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9, successors of i is 2i and 2i + 1 (if exist). What a DFS expansion sequence?

DFS Example 1 Diagram

DFS Example 2

Quiz

- Suppose the states are integers between 1 and $2^{10} = 1024$. The initial state is 1, and the goal state is 1024. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?
- A: 10
- B:11
- C:12
- D: 1023
- E: 1024

DFS Example 3

Quiz

- Suppose the states are integers between 1 and $2^{10} 1 = 1023$. The initial state is 1, and the goal state is 1023. The successors of a state i are 2i and 2i + 1, if exist. How many states are expanded during a DFS search?
- A: 10
- B:11
- C:12
- D: 1023
- E: 1024

Depth First Search Performance

Discussion

- DFS is incomplete if $D = \infty$.
- DFS is not optimal.

Depth First Search Complexity

1 + b + b + ... b

 Time complexity: the worst case occurs when the goal is the root of the last subtree expanded in the whole graph.

$$T = b^{D-d+1}... + b^{D-1} + b^{D} +$$

 Space complexity: the worst case is storing all vertices sharing the parents with vertices in the current path.

Iterative Deepening Search

Description

Space Japan DPS 7 fast Von

- DFS but stop if path length > 1
- repeat DFS but stop if path length > 2
- ...

repeat DFS but stop if path length > d

IDS Example 1

Suppose the states are positive integers between 1 and 10, initial state is 1, goal state is 9 successors of i is 2i and 2i + 1 (if exist). What a IDS expansion sequence?

Level 0; 1 ovel 1, 1, 2, 3 1 level 2, 1, 2, 4, 5, 3, 6, 7 1 level 3: 1, 2, 4, 8, 9

IDS Example 1 Diagram

Iterative Deepening Search Performance

Discussion

- IDS is complete.
- IDS is complete.
 IDS is optimal with c = 1.

Iterative Deepening Search Complexity

Discussion

 Time complexity: the worst case occurs when the goal is the last vertex at depth d.

$$T = db + (d-1)b^{2} + \dots + 3b^{d-2} + 2b^{d-1} + 1b^{d}$$

Space complexity: it has the same space complexity as DFS.

$$S = (b-1) d^{-1}$$

Configuration Space

Discussion

Summary

Discussion

- Search:
- Uninformed: Breadth first search → Add states at the end → Remove states from the front → Complete + Optimal.
- 2 Uninformed: Depth first search \rightarrow Add states to the front \rightarrow Remove states to the front \rightarrow Incomplete + Not optimal.
- **3** Uninformed: Itervative deepening search \rightarrow DFS with depth limits 1, 2, ... \rightarrow Complete + Optimal.
- Informed: Uniform cost search
- Informed: Best first greedy search √_
- Informed: A search
- Informed: A star search

