▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

CS540 Introduction to Artificial Intelligence Lecture 1

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 27, 2022

Perceptron 000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generative Adversarial Network

- Generative Adversarial Network (GAN):
- **(** Generative part: input random noise and output fake images.
- Oiscriminative part: input real and fake images and output labels real or fake.
- **③** The two parts compete with each other.

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 1

Data	images of cats and dogs
Features (Input)	height, length, eye color,
Labels (Output)	cat or dog

Data	images of 1000 object classes
Features (Input)	pixel information
Labels (Output)	turtle or rifle

Perceptron 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Example 2 Motivation

Data	handwritten characters
Features (Input)	pixel intensity, stroke,
Labels (Output)	δ or $\sigma, arphi$ or ψ

Data	voice recording	
Features (Input)	signal, sound (phoneme),	
Labels (Output)	recognize speech or wreck a nice beach	

Perceptron 000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Supervised Learning Example 3 Motivation

Data	medical records
Features (Input)	scan, blood, and test results,
Labels (Output)	cancer or no cancer

Data	patient information
Features (Input)	age, pre-existing conditions,
Labels (Output)	cancer or no cancer

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 4

Data	emails
Features (Input)	word count, capitalization,
Labels (Output)	spam or ham

Data	comments
Features (Input)	word count, capitalization,
Labels (Output)	offensive or not

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 5 Motivation

Data	face images
Features (Input)	edges, corners,
Labels (Output)	face or non-face

Data	self-driving car data
Features (Input)	color, distance (depth), movement,
Labels (Output)	road or car or pedestrian

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 6

Data	book or movie reviews
Features (Input)	word count, capitalization,
Labels (Output)	positive or negative

Data	financial transactions
Features (Input)	amount, frequency,
Labels (Output)	fraud or not

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Supervised Learning Example 7 Motivation

Data	painting	
Features (Input)	appearance, price,	
Labels (Output)	art or garbage	

Data	essay		
Features (Input)	length, key words,		
Labels (Output)	A+ or F		

Perceptron 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning Motivation

• Supervised learning:

Data	Features	Labels	-
Sample	$\{(x_{i1},,x_{im})\}_{i=1}^{n}$	$\{y_i\}_{i=1}^n$	find "best" \hat{f}
-	observable	known	-
New	$(x'_1,, x'_m)$	у′	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

Perceptron 000000000

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Training and Test Sets

• Supervised learning:

Data	Features	Labels	-
Training	$\{(x_{i1},,x_{im})\}_{i=1}^{n'}$	$\{y_i\}_{i=1}^{n'}$	find "good" \hat{f}
-	observable	known	-
Validation	$\{(x_{i1},,x_{im})\}_{i=n'}^n$	$\{y_i\}_{i=n'}^n$	find "best" \hat{f}
-	observable	known	-
Test	$(x'_1,, x'_m)$	y'	guess $\hat{y} = \hat{f}(x')$
_	observable	unknown	-

Perceptron •00000000

Linear Classifier

- One possible guess is in the form of a linear classifier. $\hat{y} = \mathbb{1}_{\{w_1 x_1 + w_2 x_2 + ... + w_m x_m + b \ge 0\}}$ $= \mathbb{1}_{\{w_1^T x_1 + b \ge 0\}}$
- The 1 (open number 1) is the indicator function.

$$\mathbb{1}_E = \begin{cases} 1 & \text{if } E \text{ is true} \\ 0 & \text{if } E \text{ is false} \end{cases}$$

Perceptron 00000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Linear Threshold Unit

- This simple linear classifier is also called a Linear Threshold Unit (LTU) Perceptron.
- $w_1, w_2, ..., w_m$ are called the weights, and b is called the bias.
- The function that makes the prediction based on $w^T x + b$ is called the activation function.
- For an LTU Perceptron, the activation function is the indicator function.

$$g\left(\bigcirc \right) = \mathbb{1}_{\left\{ \bigcirc \geqslant 0 \right\}}$$

Perceptron 00000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Equation of a Line

- In 1D, $w_1x_1 + b \ge 0$ is just a threshold rule: $x_1 \ge -\frac{b}{w_1}$ implies $\hat{y} = 1$.
- In 2D, $w_1x_1 + w_2x_2 + b \ge 0$ can be written as $\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + b \ge 0$. Note that $w_1x_1 + w_2x_2 + b = 0$ is the equation of a line, usually written as $x_2 = -\frac{w_1}{w_2}x_1 - \frac{b}{w_2}$.

Perceptron 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Equation of a Hyperplane Motivation

• In 3D,
$$w_1x_1 + w_2x_2 + w_3x_3 + b \ge 0$$
 can be written as

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b \ge 0.$$
 Note that
 $w_1x_1 + w_2x_2 + w_3x_3 + b = 0$ is the equation of a plane, and

$$\begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix}$$
 is normal vector of the plane.

• The normal vector is perpendicular to all vectors on the plane.

Perceptron 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

LTU Perceptron Training Motivation

- Given the training set {(x₁, y₁), (x₂, y₂), ..., (x_n, y_n)}, the process of figuring out the weights and the bias is called training an LTU Perceptron.
- A training data point x_i is also called an instance.
- One algorithm to train an LTU Perceptron is called the Perceptron Algorithm.

Perceptron 000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm

- Initialize random weights.
- Evaluate the activation function at one instance x_i to get \hat{y}_i .
- If the prediction ŷ_i is 0 and actual y_i is 1, increase the weights by x_i.
- If the prediction ŷ_i is 1 and actual y_i is 0, decrease the weights by x_i.
- Repeat for all data points and until convergent.

Perceptron 000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm, Part 1 Algorithm

- Inputs: instances: $\{x_i\}_{i=1}^n$ and $\{y_i\}_{i=1}^{n}$
- Outputs: weights and biases: $w_1, ..., w_m$, and b.
- Initialize the weights.

$$w_1, ..., w_m, b \sim$$
 Unif $[-1, 1]$

Unif [I, u] means picking a random number between I and u.

• Evaluate the activation function at a single data point x_i .

$$a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$

Perceptron 000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perceptron Algorithm, Part 2 Algorithm

• Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$
$$b = b - \alpha (a_i - y_i)$$

- Repeat the process for every $x_i, i = 1, 2, ..., n$.
- Repeat until $a_i = y_i$ for every i = 1, 2, ..., n.

Perceptron 00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Learning Rate

- The learning rate α controls how fast the weights are updated.
- They can be constant for each update or they can change (usually decrease) for each update.
- For perceptron learning, it is typically set to 1.