Alpha Beta Pruning

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CS540 Introduction to Artificial Intelligence Lecture 21

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

August 9, 2022

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pirate Game Example

Alpha Beta Pruning

Heuristic 000000000

Pirate Game Example Diagram

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Summary Discussion

Alpha Beta Pruning

Heuristic 000000000

Tic Tac Toe Example

Motivation

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Nim Game Example

Motivation

Alpha Beta Pruning

Heuristic 000000000

Minimax Algorithm

• Use DFS on the game tree.

Alpha Beta Pruning

Heuristic 000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Minimax Example

Alpha Beta Pruning

Heuristic 000000000

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Minimax Performance

• The time and space complexity is the same as DFS. Note that D = d is the maximum depth of the terminal states.

$$T = 1 + b + b^2 + \dots + b^d$$
$$S = (b - 1) \cdot d$$

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Non-deterministic Game

- For non-deterministic games in which chance can make a move (dice roll or coin flip), use expected reward or cost instead.
- The algorithm is also called expectiminimax.

Alpha Beta Pruning

Heuristic 000000000

Game Tree with Chance Example 1

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Pruning

Heuristic 000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Game Tree with Chance Example 1 Diagram

Alpha Beta Pruning •00000000 Heuristic 000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pruning Motivation

- Time complexity is a problem because the computer usually has a limited amount of time to "think" and make a move.
- It is possible to reduce the time complexity by removing the branches that will not lead the current player to win. It is called the Alpha-Beta pruning.

Alpha Beta Pruning

Heuristic 000000000

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Alpha Beta Pruning Description

- \bullet During DFS, keep track of both α and β for each vertex.
- Prune the subtree with $\alpha \ge \beta$.

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 1

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 1 Continued

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 2 _{Quiz}

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 3 _{Quiz}

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 4

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 4

Alpha Beta Pruning

Heuristic 000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Alpha Beta Example 4 Continued

Alpha Beta Pruning

Heuristic 000000000

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Alpha Beta Performance

- In the best case, the best action of each player is the leftmost child.
- In the worst case, Alpha Beta is the same as minimax.

Alpha Beta Pruning

Heuristic •00000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Static Evaluation Function

- A static board evaluation function is a heuristics to estimate the value of non-terminal states.
- It should reflect the player's chances of winning from that vertex.
- It should be easy to compute from the board configuration.

Heuristic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Linear Evaluation Function Example

- For Chess, an example of an evaluation function can be a linear combination of the following variables.
- Material.
- Ø Mobility.
- Sking safety.
- Center control.
 - These are called the features of the board.

Alpha Beta Pruning

Heuristic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Iterative Deepening Search

- IDS could be used with SBE.
- In iteration *d*, the depth is limited to *d*, and the SBE of the non-terminal vertices are used as their cost or reward.

Alpha Beta Pruning

Heuristic

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

IDS with SBE Diagram

Discussion

Alpha Beta Pruning

Heuristic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Non Linear Evaluation Function

- The SBE can be estimated given the features using a neural network.
- The features are constructed using domain knowledge, or a possibly a convolutional neural network.
- The training data are obtained from games between professional players.

Alpha Beta Pruning

Heuristic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Monte Carlo Tree Search

- Simulate random games by selecting random moves for both players.
- Exploitation by keeping track of average win rate for each successor from previous searches and picking the successors that lead to more wins.
- Exploration by allowing random choices of unvisited successors.

Alpha Beta Pruning

Heuristic 0000000000

Monte Carlo Tree Search Diagram

Discussion

Alpha Beta Pruning

Heuristic

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Alpha GO Example

Discussion

- MCTS with $> 10^5$ play-outs.
- Convolutional neural network to compute SBE.

Alpha Beta Pruning

Heuristic 00000000

Summary Discussion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ