CS540 Introduction to Artificial Intelligence Lecture 2

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 28, 2022

Two-thirds of the Average Game

A1

Socrative room

CSS40C

 Pick an integer between 0 and 100 (including 0 and 100) that is the closest to two-thirds of the average of the numbers other people picked.

Quizzes, Math Homework, Discussions

- Due dates: Monday, <u>late</u> submission withint a week or so without penalty (regrade requests).
- Share solutions (M2 etc): before due date (one or two days late is okay).
- Share solutions (X1 etc): a week before the exam.
- Group discussions: no due dates.

0,5

Office Hours, Discussion Sessions

or Zoon

• Answer M, P homework questions on Saturday evenings?

A: Yes, I will attend.

B: Yes, but I will not attend.

• <u>C</u>: No.

Supervised Learning

Motivation

LTU

Data	Features	Labels	- 6
Training	$\{(x_{i1},,x_{im})\}_{i=1}^{n'}$	$\{y_i\}_{i=1}^{n'}$	find "best" \hat{f}
-	observable	known	-
Test	$(x'_1,,x'_m)$	y'	guess $\hat{y} = \hat{f}(x')$
-	observable	unknown	-

court + mistakes.

Zero-One Loss Function

Motivation

• An objective function is needed to select the "best" \hat{f} . An example is the zero-one loss.

$$\hat{f} = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{n} \widehat{\mathbb{Q}}_{f(x_i) \neq y_i}$$

$$0 \quad \text{if } f(x_i) \neq y_i$$

- argmin_f objective (f) outputs the function that minimizes the objective.
- The objective function is called the cost function (or the loss function), and the objective is to minimize the cost.

Squared Loss Function

Motivation

- Zero-one loss counts the number of mistakes made by the classifier. The best classifier is the one that makes the fewest mistakes.
- Another example is the squared distance between the predicted and the actual y value:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

Loss Functions Equivalence

Quiz

 Which one of the following functions is not equivalent to the squared error for binary classification?

Loss Functions Equivalence, Answer

Function Space Diagram

Motivation

Hypothesis Space

Motivation

- There are too many functions to choose from.
- There should be a smaller set of functions to choose \hat{f} from.

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• The set \mathcal{H} is called the hypothesis space.

Activation Function

Motivation

• Suppose \mathcal{H} is the set of functions that are compositions between another function g and linear functions.

$$\left(\hat{w}, \hat{b}\right) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2$$
where $a_i = g\left(\underbrace{w^T x + b}\right)$

g is called the activation function.

Linear Threshold Unit Motivation

 One simple choice is to use the step function as the activation function:

$$g\left(\begin{array}{c} \end{array}\right) = \mathbb{1}_{\left\{\begin{array}{c} \cdot \\ \end{array}\right\} \geq 0} = \left\{\begin{array}{cc} 1 & \text{if } \cdot \geq 0 \\ 0 & \text{if } \cdot < 0 \end{array}\right.$$

• This activation function is called linear threshold unit (LTU).

Sigmoid Activation Function

Motivation

 When the activation function g is the sigmoid function, the problem is called logistic regression.

$$g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$$

This g is also called the logistic function.

Sigmoid Function Diagram

Motivation

Cross-Entropy Loss Function

Motivation

 The cost function used for logistic regression is usually the log cost function.

$$C(f) = -\sum_{i=1}^{n} (y_i \log (f(x_i)) + (1 - y_i) \log (1 - f(x_i)))$$

• It is also called the cross-entropy loss function.

Logistic Regression Objective

Motivation

 The logistic regression problem can be summarized as the following.

$$(\hat{w}, \hat{b}) = \underset{\underline{w,b}}{\operatorname{argmin}} = \sum_{i=1}^{n} (y_i \log(a_i) + (1 - y_i) \log(1 - a_i))$$
where $a_i = \frac{1}{1 + \exp(-z_i)}$ and $z_i = w^T x_i + b$

$$0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0$$

Optimization Diagram

Motivation

Opposite diretion of derivative (gradione)

Logistic Regression

Description

- Initialize random weights.
- Evaluate the activation function.
- Compute the gradient of the cost function with respect to each weight and bias.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Gradient Descent Step

Definition

• For logistic regression, use chain rule twice.

$$w = w - \alpha \sum_{i=1}^{n} \underbrace{(a_i - y_i) x_i}$$

$$b = b - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

$$a_i = g\left(w^T x_i + b\right), g\left(\overline{\cdot}\right) = \frac{1}{1 + \exp\left(-\overline{\cdot}\right)}$$

 α is the learning rate. It is the step size for each step of gradient descent.

Perceptron Algorithm

Definition

Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$

$$b = b - \alpha (a_i - y_i)$$

$$a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$

Learning Rate Diagram

Definition

Other Non-linear Activation Function

Discussion

- Activation function: $g(\cdot) = \tanh(\cdot) = \frac{e^{\cdot} e^{-\cdot}}{e^{\cdot} + e^{-\cdot}}$
- Activation function: $g(\overline{\cdot}) = \arctan(\overline{\cdot})$
- Activation function (rectified linear unit): $g\left(\boxdot\right) = \boxdot \mathbb{1}_{\left\{\boxdot \geqslant 0\right\}}$
- All these functions lead to objective functions that are convex and differentiable (almost everywhere). Gradient descent can be used.

Gradient Descent

• What is the gradient descent step for w if the objective (cost) function is the squared error? $w_1 \times v_2 \times v_3 \times v_4 + w_4 \times v_5 \times v_6 + w_6 \times v$

$$C = \underbrace{\frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2}_{i=1}, a_i = \underbrace{g\left(w^T x_i + b\right)}_{g(z)}, g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial C}{\partial w_{j}} = \frac{\sum_{i=1}^{n} \partial C_{i}}{\partial \alpha_{i}} \frac{\partial G_{i}}{\partial w_{j}} = \sum_{i=1}^{n} (\alpha_{i} - y_{i}) \cdot \alpha_{i} (k - \alpha_{i}) \cdot X_{ij}$$

$$w_j = w_j - \frac{\partial c}{\partial w_j}$$

Gradient Descent, Answer

$$\frac{+e^{-\frac{2}{8}}}{(1+e^{-\frac{2}{8}})^{2}} = \frac{e^{-\frac{2}{8}}}{1+e^{-\frac{2}{8}}} \cdot \frac{1}{1+e^{-\frac{2}{8}}}$$

$$= (1-\frac{1}{1+e^{-\frac{2}{8}}}) \cdot \frac{1}{1+e^{-\frac{2}{8}}}$$

$$= (1-q_{i}) \cdot q_{i}$$

Gradient Descent, Answer Too Quiz

Gradient Descent

Quiz

 What is the gradient descent step for w if the objective (cost) function is the squared error?

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i = g(w^T x_i + b), g'(z) = g(z) \cdot (1 - g(z))$$

•
$$A: w = w - \alpha \sum (a_i - y_i)$$

•
$$B: w = w - \alpha \sum (a_i - y_i) x_i$$

•
$$C: w = w - \alpha \sum (a_i - y_i) a_i x_i$$

•
$$D: w = w - \alpha \sum (a_i - y_i) (1 - a_i) x_i$$

•
$$E: w = w - \alpha \sum (a_i - y_i) a_i (1 - a_i) x_i$$

Gradient Descent, Another One, Answer

Gradient Descent, Another One Too

Quiz

 What is the gradient descent step for w if the activation function is the identity function?

ion is the identity function?
$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i = w^T x_i + b$$

$$w_i = w_i - \frac{\partial v_i}{\partial w_i}$$

$$v = w - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

•
$$A: w = w - \alpha \sum (a_i - y_i)$$

•
$$B: w = w - \alpha \sum (a_i - y_i) x_i$$

•
$$C: w = w - \alpha \sum (a_i - y_i) a_i x_i$$

•
$$D: w = w - \alpha \sum (a_i - y_i) (1 - a_i) x_i$$

•
$$E: w = w - \alpha \sum (a_i - y_i) a_i (1 - a_i) x_i$$

Squared loss

Gradient Descent, Another One Too, Answer

Convexity Diagram

Discussion