# CS540 Introduction to Artificial Intelligence Lecture 2

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 28, 2022

# Two-thirds of the Average Game

A1

Socrative room

CSS40C

 Pick an integer between 0 and 100 (including 0 and 100) that is the closest to two-thirds of the average of the numbers other people picked.

# Quizzes, Math Homework, Discussions

- Due dates: Monday, <u>late</u> submission withint a week or so without penalty (regrade requests).
- Share solutions (M2 etc): before due date (one or two days late is okay).
- Share solutions (X1 etc): a week before the exam.
- Group discussions: no due dates.

0,5

# Office Hours, Discussion Sessions

or Zoon

• Answer M, P homework questions on Saturday evenings?

A: Yes, I will attend.

B: Yes, but I will not attend.

• <u>C</u>: No.

## Supervised Learning

Motivation

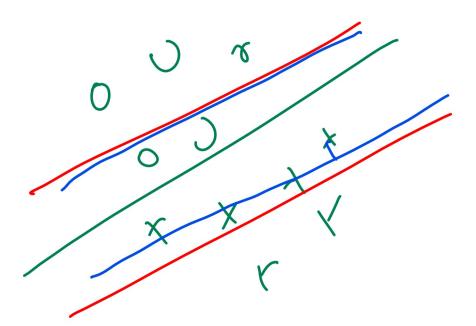
LTU

| Data     | Features                          | Labels               | - 6                           |
|----------|-----------------------------------|----------------------|-------------------------------|
| Training | $\{(x_{i1},,x_{im})\}_{i=1}^{n'}$ | $\{y_i\}_{i=1}^{n'}$ | find "best" $\hat{f}$         |
| -        | observable                        | known                | -                             |
| Test     | $(x'_1,,x'_m)$                    | y'                   | guess $\hat{y} = \hat{f}(x')$ |
| -        | observable                        | unknown              | -                             |





court + mistakes.



#### Zero-One Loss Function

#### Motivation

• An objective function is needed to select the "best"  $\hat{f}$ . An example is the zero-one loss.

$$\hat{f} = \underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{n} \widehat{\mathbb{Q}}_{f(x_i) \neq y_i}$$

$$0 \quad \text{if } f(x_i) \neq y_i$$

- argmin<sub>f</sub> objective (f) outputs the function that minimizes the objective.
- The objective function is called the cost function (or the loss function), and the objective is to minimize the cost.

### Squared Loss Function

Motivation

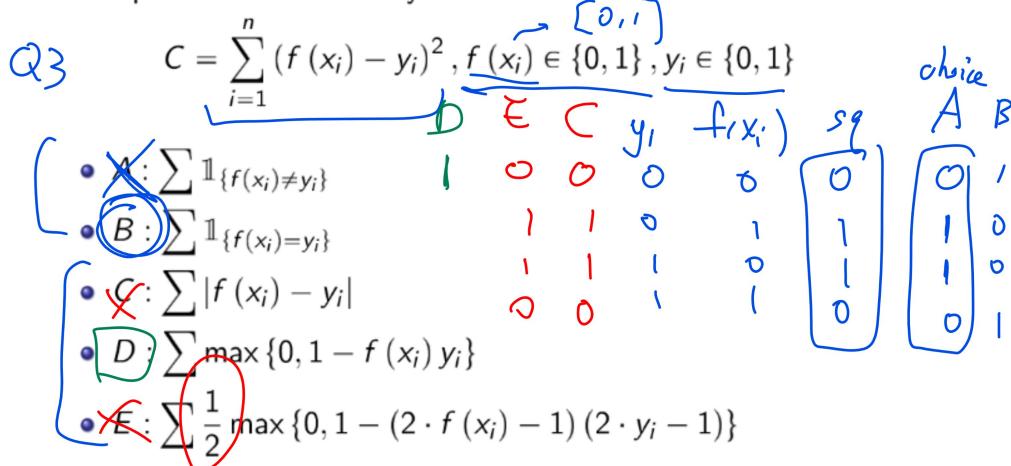
- Zero-one loss counts the number of mistakes made by the classifier. The best classifier is the one that makes the fewest mistakes.
- Another example is the squared distance between the predicted and the actual y value:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

### Loss Functions Equivalence

Quiz

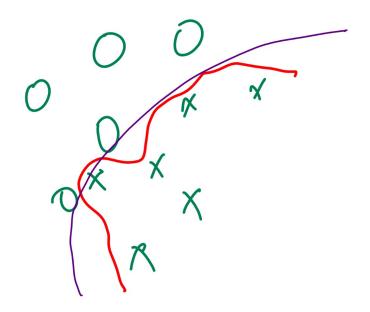
 Which one of the following functions is not equivalent to the squared error for binary classification?



# Loss Functions Equivalence, Answer

# Function Space Diagram

Motivation



### Hypothesis Space

Motivation

- There are too many functions to choose from.
- There should be a smaller set of functions to choose  $\hat{f}$  from.

$$\hat{f} = \underset{f \in \mathcal{H}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

• The set  $\mathcal{H}$  is called the hypothesis space.

#### **Activation Function**

#### Motivation

• Suppose  $\mathcal{H}$  is the set of functions that are compositions between another function g and linear functions.

$$\left(\hat{w}, \hat{b}\right) = \underset{w,b}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2$$
where  $a_i = g\left(\underbrace{w^T x + b}\right)$ 

g is called the activation function.

# Linear Threshold Unit Motivation

 One simple choice is to use the step function as the activation function:

$$g\left(\begin{array}{c} \end{array}\right) = \mathbb{1}_{\left\{\begin{array}{c} \cdot \\ \end{array}\right\} \geq 0} = \left\{\begin{array}{cc} 1 & \text{if } \cdot \geq 0 \\ 0 & \text{if } \cdot < 0 \end{array}\right.$$

• This activation function is called linear threshold unit (LTU).

### Sigmoid Activation Function

Motivation

 When the activation function g is the sigmoid function, the problem is called logistic regression.

$$g\left(\boxed{\cdot}\right) = \frac{1}{1 + \exp\left(-\boxed{\cdot}\right)}$$

This g is also called the logistic function.

### Sigmoid Function Diagram

Motivation

### Cross-Entropy Loss Function

Motivation

 The cost function used for logistic regression is usually the log cost function.

$$C(f) = -\sum_{i=1}^{n} (y_i \log (f(x_i)) + (1 - y_i) \log (1 - f(x_i)))$$

• It is also called the cross-entropy loss function.

### Logistic Regression Objective

Motivation

 The logistic regression problem can be summarized as the following.

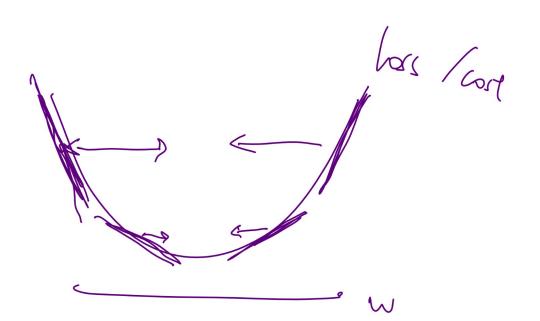
$$(\hat{w}, \hat{b}) = \underset{\underline{w,b}}{\operatorname{argmin}} = \sum_{i=1}^{n} (y_i \log(a_i) + (1 - y_i) \log(1 - a_i))$$
where  $a_i = \frac{1}{1 + \exp(-z_i)}$  and  $z_i = w^T x_i + b$ 

$$0 \quad 0 \quad 0$$

$$0 \quad 0 \quad 0$$

### **Optimization Diagram**

Motivation



Opposite diretion of derivative (gradione)

### Logistic Regression

Description

- Initialize random weights.
- Evaluate the activation function.
- Compute the gradient of the cost function with respect to each weight and bias.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

### Gradient Descent Step

#### Definition

• For logistic regression, use chain rule twice.

$$w = w - \alpha \sum_{i=1}^{n} \underbrace{(a_i - y_i) x_i}$$

$$b = b - \alpha \sum_{i=1}^{n} (a_i - y_i)$$

$$a_i = g\left(w^T x_i + b\right), g\left(\overline{\cdot}\right) = \frac{1}{1 + \exp\left(-\overline{\cdot}\right)}$$

 α is the learning rate. It is the step size for each step of gradient descent.

### Perceptron Algorithm

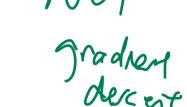
Definition

Update weights using the following rule.

$$w = w - \alpha (a_i - y_i) x_i$$

$$b = b - \alpha (a_i - y_i)$$

$$a_i = \mathbb{1}_{\{w^T x_i + b \ge 0\}}$$



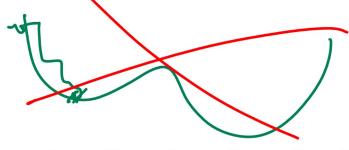
# Learning Rate Diagram

Definition

#### Other Non-linear Activation Function

#### Discussion

- Activation function:  $g(\cdot) = \tanh(\cdot) = \frac{e^{\cdot} e^{-\cdot}}{e^{\cdot} + e^{-\cdot}}$
- Activation function:  $g(\overline{\cdot}) = \arctan(\overline{\cdot})$
- Activation function (rectified linear unit):  $g\left(\boxdot\right) = \boxdot \mathbb{1}_{\left\{\boxdot \geqslant 0\right\}}$
- All these functions lead to objective functions that are convex and differentiable (almost everywhere). Gradient descent can be used.



# Gradient Descent

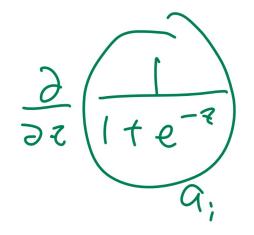
• What is the gradient descent step for w if the objective (cost) function is the squared error?  $w_1 \times v_2 \times v_3 \times v_4 + w_4 \times v_5 \times v_6 + w_6 \times v$ 

$$C = \underbrace{\frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2}_{i=1}, a_i = \underbrace{g\left(w^T x_i + b\right)}_{g(z)}, g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial C}{\partial w_{j}} = \frac{\sum_{i=1}^{n} \partial C_{i}}{\partial \alpha_{i}} \frac{\partial G_{i}}{\partial w_{j}} = \sum_{i=1}^{n} (\alpha_{i} - y_{i}) \cdot \alpha_{i} (k - \alpha_{i}) \cdot X_{ij}$$

$$w_j = w_j - \frac{\partial c}{\partial w_j}$$

#### Gradient Descent, Answer



$$\frac{+e^{-\frac{2}{8}}}{(1+e^{-\frac{2}{8}})^{2}} = \frac{e^{-\frac{2}{8}}}{1+e^{-\frac{2}{8}}} \cdot \frac{1}{1+e^{-\frac{2}{8}}}$$

$$= (1-\frac{1}{1+e^{-\frac{2}{8}}}) \cdot \frac{1}{1+e^{-\frac{2}{8}}}$$

$$= (1-q_{i}) \cdot q_{i}$$

# Gradient Descent, Answer Too Quiz

#### **Gradient Descent**

Quiz

 What is the gradient descent step for w if the objective (cost) function is the squared error?

$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i = g(w^T x_i + b), g'(z) = g(z) \cdot (1 - g(z))$$

• 
$$A: w = w - \alpha \sum (a_i - y_i)$$

• 
$$B: w = w - \alpha \sum (a_i - y_i) x_i$$

• 
$$C: w = w - \alpha \sum (a_i - y_i) a_i x_i$$

• 
$$D: w = w - \alpha \sum (a_i - y_i) (1 - a_i) x_i$$

• 
$$E: w = w - \alpha \sum (a_i - y_i) a_i (1 - a_i) x_i$$

# Gradient Descent, Another One, Answer

## Gradient Descent, Another One Too

Quiz

 What is the gradient descent step for w if the activation function is the identity function?



ion is the identity function?
$$C = \frac{1}{2} \sum_{i=1}^{n} (a_i - y_i)^2, a_i = w^T x_i + b$$

$$w_i = w_i - \frac{\partial v_i}{\partial w_i}$$

$$v = w - \alpha \sum_{i=1}^{n} (a_i - y_i)$$



• 
$$A: w = w - \alpha \sum (a_i - y_i)$$

• 
$$B: w = w - \alpha \sum (a_i - y_i) x_i$$

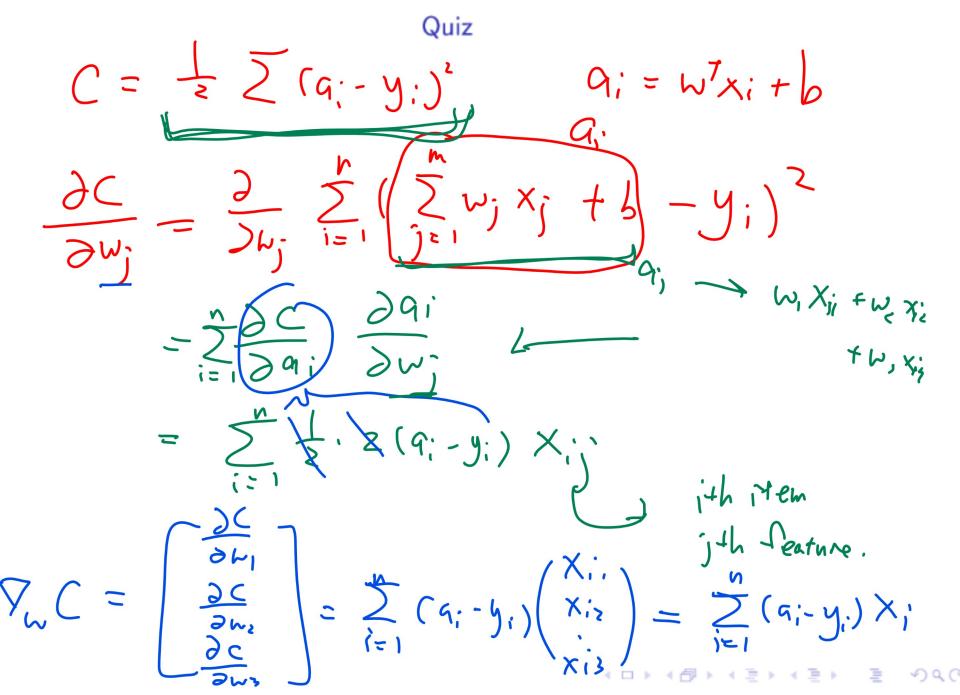
• 
$$C: w = w - \alpha \sum (a_i - y_i) a_i x_i$$

• 
$$D: w = w - \alpha \sum (a_i - y_i) (1 - a_i) x_i$$

• 
$$E: w = w - \alpha \sum (a_i - y_i) a_i (1 - a_i) x_i$$

Squared loss

#### Gradient Descent, Another One Too, Answer



## Convexity Diagram

Discussion