CS540 Introduction to Artificial Intelligence Lecture 3

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

June 29, 2022

Two-thirds of the Average Game

- Pick an integer between 0 and 100 (including 0 and 100) that is the closest to two-thirds of the average of the numbers other people picked.
- The results from the previous lecture is posted on the Q1 page of the course website.

AND Operator Data

Quiz

$$2 \cdot \text{Rand} - 1$$
(0,1)
(-1,1)

Sample data for AND

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	0
1	0	0
1	1	1

Learning AND Operator

Quiz

• Which one of the following is AND?

•
$$A: \hat{y} = \mathbb{1}_{\{1x_1+1x_2-1.5 \ge 0\}}$$

•
$$B: \hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5 \ge 0\}}$$

•
$$C: \hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$$

•
$$D: \hat{y} = \mathbb{1}_{\{-1x_1 - 1x_2 + 0.5 \ge 0\}}$$

• E : None of the above

OR Operator Data

Sample data for OR

<i>x</i> ₁	<i>X</i> ₂	У
0	0	0
0	1	1
1	0	1
1	1	1

Learning OR Operator Quiz

Q 2 • Which one of the following is OR?

$$\hat{y} = \mathbb{1}_{\{1x_1 + 1x_2 - 1.5 \ge 0\}}$$

•
$$B: \hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5 \ge 0\}}$$

•
$$\hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$$

•
$$D: \hat{y} = \mathbb{1}_{\{-1x_1-1x_2+0.5 \ge 0\}}$$

• E : None of the above

イロト イ団ト イミト イミト

Learning XOR Operator

Quiz

•
$$A: \hat{y} = \mathbb{1}_{\{1x_1+1x_2-1.5 \ge 0\}}$$

•
$$B: \hat{y} = \mathbb{1}_{\{1x_1+1x_2-0.5 \ge 0\}}$$

•
$$C: \hat{y} = \mathbb{1}_{\{-1x_1+0.5 \ge 0\}}$$

•
$$D: \hat{y} = \mathbb{1}_{\{-1x_1 - 1x_2 + 0.5 \ge 0\}}$$

E : None of the above

Learning XOR Operator Network

• $y = x_1 \text{ XOR } x_2$ is the same as $y = (x_1 \text{ OR } x_2) \text{ AND } (x_1 \text{ NAND } x_2)$

Single Layer Perceptron

Motivation

LTU, logistic

- Perceptrons can only learn linear decision boundaries.
- Many problems have non-linear boundaries.
- One solution is to connect perceptrons to form a network.

Decision Boundary Diagram

Motivation

$$\hat{y}_{i} = 1 \left\{ g(w_{x_{i}+b}) > 0.5 \right\}$$

$$\log_{i} x_{i}$$

$$\log_{i} x_{i}$$

$$\log_{i} x_{i}$$

$$\log_{i} x_{i}$$

$$\log_{i} x_{i}$$

Multi-Layer Perceptron

Motivation

• The output of a perceptron can be the input of another.

Neural Network Biology

- Each neuron receives input from 1,000 others.
- An impulse can either increase or decrease the possibility of nerve pulse firing.
- If sufficiently strong, a nerve pulse is generated.
- The pulse forms the input to other neurons.

Theory of Neural Network

- In theory:
- 1 Hidden-layer with enough hidden units can represent any continuous function of the inputs with arbitrary accuracy.
- 2 Hidden-layer can represent discontinuous functions.
 - In practice:
- AlexNet: 8 layers.
- GoogLeNet: 27 layers (or 22 + pooling).
- ResNet: 152 layers.

Gradient Descent

Motivation

• The derivatives are more difficult to compute. " " cight 5.

- The problem is no longer convex. A local minimum is no longer guaranteed to be a global minimum.
- Need to use chain rule between layers called backpropagation.

Backpropagation

Description

- Initialize random weights.
- (Feedforward Step) Evaluate the activation functions.
- (Backpropagation Step) Compute the gradient of the cost function with respect to each weight and bias using the chain rule.
- Update the weights and biases using gradient descent.
- Repeat until convergent.

Neural Network Demo

Motivation

Two-Layer Neural Network Weights Diagram 1

Two-Layer Neural Network Weights Diagram 2

Motivation

$$\frac{\partial C}{\partial w_{12}^{(1)}} = \sum_{i=1}^{n} \frac{\partial C}{\partial q_{i}^{(2)}} \cdot \frac{\partial q_{i}^{(2)}}{\partial q_{i}^{(2)}} \cdot \frac{\partial Q_{i}^{(1)}}{\partial w_{i2}^{(1)}}$$

$$= \left(C_{i}^{(2)} - y_{i}^{(1)}\right) \left(C_{i}^{(2)} \left(1 - q_{i}^{(2)}\right)\right) \cdot w_{i}^{(2)}$$

$$= C_{i}^{(1)} \cdot \left(1 - q_{i}^{(2)}\right) \times \left(1 - q_{i}^{(2)}\right) \times \left(1 - q_{i}^{(2)}\right) \times \left(1 - q_{i}^{(2)}\right)$$

$$= C_{i}^{(1)} \cdot \left(1 - q_{i}^{(2)}\right) \cdot \left(1 - q_{i}^{(2)}\right) \times \left(1 - q_{i}^{(2)$$

Two-Layer Neural Network Weights Diagram 3 Motivation

Gradient Step, Combined

Definition

Squared loss x

• Put everything back into the chain rule formula. (Please

$$\frac{\partial C}{\partial w_{i'i}^{(1)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)}\right) x_{ij'} \overset{\text{C.Y.}}{}_{i'j} a_{i'j'}$$

$$\frac{\partial C}{\partial b_i^{(1)}} = \sum_{i=1}^n (a_i - y_i) a_i (1 - a_i) w_j^{(2)} a_{ij}^{(1)} \left(1 - a_{ij}^{(1)} \right)$$

$$\frac{\partial C}{\partial w_i^{(2)}} = \sum_{i=1}^n (a_i - y_i) a_i (1 - a_i) a_{ij}^{(1)}$$

$$\frac{\partial C}{\partial b^{(2)}} = \sum_{i=1}^{n} (a_i - y_i) a_i (1 - a_i)$$

Gradient Descent Step

Definition

 The gradient descent step is the same as the one for logistic regression.

$$\begin{split} w_{j}^{(2)} &\leftarrow w_{j}^{(2)} - \alpha \frac{\partial C}{\partial w_{j}^{(2)}}, j = 1, 2,, m^{(1)} \\ b^{(2)} &\leftarrow b^{(2)} - \alpha \frac{\partial C}{\partial b^{(2)}}, \\ w_{j'j}^{(1)} &\leftarrow w_{j'j}^{(1)} - \alpha \frac{\partial C}{\partial w_{j'j}^{(1)}}, j' = 1, 2,, m, j = 1, 2,, m^{(1)} \\ b_{j}^{(1)} &\leftarrow b_{j}^{(1)} - \alpha \frac{\partial C}{\partial b_{i}^{(1)}}, j = 1, 2,, m^{(1)} \end{split}$$

Learning Logical Operators, XOR

Quiz

• What function does the multi-layer LTU perceptron network with $w_{11}^{(1)} = -1$, $w_{21}^{(1)} = -1$, $b_1^{(1)} = 1.5$, $w_{12}^{(1)} = 1$, $w_{22}^{(1)} = 1$, $b_2^{(1)} = -0.5$, $w_1^{(2)} = 1$, $w_2^{(2)} = 1$, $b_2^{(2)} = -1.5$ compute?

							_
<i>x</i> ₁	<i>x</i> ₂	УА	УВ	УС	УD	УE	
0	0	0	0	1	1	0	
0	1	0	1	1	0	1	
1	0	0	1	1	0	1	1
1	1	1	1	0	1	0]
a	7	1					て、

Learning Logical Operators, XOR, Diagram Quiz

<i>x</i> ₁	<i>x</i> ₂	УА	УВ	УС	УD	УЕ
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	1	0

Learning Logical Operators, XOR, Answer

Three-Layer Neural Network Weights Diagram Motivation