CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 5, 2022

Adverse Selection

QI

- Suppose the last two digits of your 10-digit student ID is the expected grade (out of 100) you will get in a course. Choose between the two courses:
- A: a course in which you get your expected grade.
- B: a course in which you get the average expected grade of everyone taking this course.

Adverse Selection, ID

A

• Enter the last two digits of your ID.

Course Rhythm

Admin

- \bigcirc (Q) In-class Quizzes, 0.5 points (T F)
- (D) Group discussion (reply to the Discussion post, also make it resolved), 0.5 points (M)
- (D) Sharing solutions (create a note, not question, and tag m2, m3, d1), 0.5 points each (M)
- (M) Math homework, 1 point (M)
- \bigcirc (P) Programming homework, 8 points $(M) \subseteq$
- (X) Exams, see Midterm page for past exams (same format this year).

Course Grades Admin

- Final grade = $0.3 \cdot X + 0.1 \max(X, Q) + 0.1 \max(X, D) + 0.1 \max(X, M) + 0.4 \cdot P$
- Additional discussion points used in borderline grades (for example 89 to A).

Sharing Solutions Admin

- Use LaTeX (Word, Maple, MyScript etc).
 - $sqrt((a_1^2) / (2 pi))$ is difficult to read compared to $\sqrt{\frac{a_1^2}{2\pi}}$.
- Mandwritten on tablet or on paper and photo or scan (Office Lens).
- Other suggestions?

Sharing Solutions

- For solution sharing, please make sure it is Piazza note, not a Piazza question.
- For actual questions, please use a different name, e.g." M2Q1
 Question" or "Question about M2Q1".
- Make sure you tag the post correctly: m2, m3, or d1 in order to get the points.
- Please sign up before making the post and please do not sign up for more than A questions per week.
- I will either "good note" the post or leave a comment: if I leave a comment, please update your answers, reply to my comment, and remember to make the reply "unresolved" so I can see.

Maximum Margin Diagram

Motivation

SVM Weights

Quiz

Find the weights
$$w_1, w_2$$
 for the SVM classifier
$$\mathbb{1}_{\underbrace{w_1x_{i1}+w_2x_{i2}+1}} 0$$
 given the training data $x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and shope

$$x_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 with $y_1 = 1, y_2 = 0$.

- $A: w_1 = 0, w_2 = -2$
- $B: w_1 = -2, w_2 = 0$
- $C: w_1 = -1, w_2 = -1$
- $D: w_1 = -2, w_2 = -2$

$$-\frac{x_{1}-x_{2}+1}{x_{2}=-x_{1}+1}$$

SVM Weights Diagram

SVM Weights Quiz

• Find the weights w_1, w_2 for the SVM classifier Find the weights w_1, w_2 given the training data $x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ with } y_1 = 1, y_2 = y_3 = 0.$ $-2x_1 - 2 \times_2 + 1 = 0$

$$x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

•
$$A: w_1 = -1.5, w_2 = -1.5$$

•
$$B: w_1 = -2, w_2 = -1.5$$

•
$$C: w_1 = -1.5, w_2 = -2$$

$$\bullet D: w_1 = -2, w_2 = -2$$

E: I don't understand SVM

SVM Weights Diagram

Constrained Optimization Diagram

Definition

Constrained Optimization Derivation

Definition

 The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the

instances with $y_i = 0$ and $y_i = 1$. $\begin{cases} w^T x_i + b \le -1 \\ w^T x_i + b \le 1 \end{cases} \text{ if } y_i = 0, i = 1, 2, ..., n$ where $y_i = 0$ if $y_i = 1$.

 This is equivalent to the following minimization problem, called hard margin SVM.

 $\min_{w} \frac{1}{2} w^T w$ such that $(2y_i - 1) (w^T x_i + b) \ge 1, i = 1, 2, ..., n$

91=1 = 1

Soft Margin Diagram

Soft Margin Derivation

Definition

SVM Formulations

Definition

• Hard margin:

$$\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \geqslant 1, i = 1, 2, ..., n$$

Soft margin:

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

$$\max_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

$$\max_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

$$\sum_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

Soft Margin

• Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the margin $\xi > 1 \xi$. constraint? $(2y_i-1)\left(w^Tx_i+b\right)\geqslant 1-\xi_i,\xi_i\geqslant 0$ (5.0-1)([15][4]+3)>1-4!3: > 18

Soft Margin 2

• Let $w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and b = 3. For the point $x = \begin{bmatrix} -4 \\ -5 \end{bmatrix}$, y = 0, what is the smallest slack variable ξ for it to satisfy the

margin constraint?

- B: 0
- C:10
- D : None of the above
- \longrightarrow E: I don't understand what is ξ

Subgradient Descent

Definition

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1)(w^Tx_i + b) = 0$.
- Subgradient can be used instead of a gradient.

Subgradient 1 Quiz

• Which ones are subderivatives of $\max\{x,0\}$ at x=0?

• A: -1

B : −0.5

C:0 D:0.5 E:1

Subgradient 2

• Which ones are subderivatives of |x| at x = 0?

- A : −1
- B: -0.5
- C:0
- D: 0.5
- E:1

Subgradient Descent Step

Definition

 One possible set of subgradients with respect to w and b are the following.

$$\partial_{w}C \ni \lambda w - \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geqslant 1\}}$$

$$\partial_{b}C \ni -\sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \geqslant 1\}}$$

 The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Regularization Parameter

Definition

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

Kernel Trick 1D Diagram

Kernelized SVM

Definition

Mith a feature man in the SMM

- With a feature map φ , the SVM can be trained on new data points $\{(\varphi(x_1), y_1), (\varphi(x_2), y_2), ..., (\varphi(x_n), y_n)\}.$
- The weights w correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_{i} = \mathbb{1}_{\{w^{T}\varphi(x_{i}) \geq 0\}}$$

$$= \left(\begin{array}{c} X_{i} \\ Y_{2} \end{array}\right) = \left(\begin{array}{c} X_{i} \\ X_{\ell} \\ X_{i} \end{array}\right)$$

$$\varphi'(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}) = \begin{pmatrix} x_1 \\ \overline{x}_1 \\ x_1 + x_2 \end{pmatrix}$$

Kernel Trick for XOR

XUR

• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the following training set?

					-
	<i>x</i> ₁	<i>X</i> ₂		y	\
	0	0	\prod	0	
	0	1	Т	1	
7	1	0		1	
	1	1	7	0	
			C		

XiJ	ZXIX	72
0	0	0
\mathcal{O}	0	1
l	0	0
1	JZ	1
X	7	7

Kernel Trick for XOR Quiz

• SVM with kernel $\varphi(x)=(x_1,x_1x_2,x_2)$ can correctly classify

the following training set.

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	1	1
1	0	1
1	1	0

A : True.

B : False.

C: What i's Kernel 1

Kernel Matrix Definition

The feature map is usually represented by a n × n matrix K called the Gram matrix (or kernel matrix).

$$K_{ii'} = \varphi(x_i)^T \varphi(x_{i'})$$
Symmetric

P. s.d.
ergenvalue > 0

Examples of Kernel Matrix

Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)$ It can be factored to have the following feature representations.

$$\varphi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1 x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)^{2}$$

Examples of Kernel Matrix Derivation Definition

Popular Kernels

Discussion

- Other popular kernels include the following.
- **1** Linear kernel: $K_{ii'} = x_i^T x_{i'}$
- Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- Radial Basis Function (Gaussian) kernel:

$$K_{ii'} = \exp\left(-\frac{1}{\sigma^2} \left(x_i - x_{i'}\right)^T \left(x_i - x_{i'}\right)\right)$$

• Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Matrix

Kernel Matrix Math

Kernel Matrix 2

• What is the feature vector $\varphi(x)$ induced by the kernel

 $K_{ii'} = 4 \exp(x_i + x_{i'}) + 2x_i x_{i'}$?

- $A: (4 \exp(x), 2\sqrt{x})$
- $B: (2 \exp(x), \sqrt{2}\sqrt{x})$
- $C: (4 \exp(x), 2x)$
- $D: (2 \exp(x), \sqrt{2}x)$
- \bullet E : None of the above

Kernel Matrix Math 2 Quiz