▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 6, 2022

 Subgradient Descent

Kernel Trick 00000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Adverse Selection

- Suppose the last two digits of your 10-digit student ID is the expected grade (out of 100) you will get in a course. Choose between the two courses:
- A : a course in which you get your expected grade.
- *B* : *a* course in which you get the average expected grade of everyone taking this course.

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Adverse Selection, ID

• Enter the last two digits of your ID.

Kernel Trick 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Course Rhythm

- **(**Q) In-class Quizzes, 0.5 points (T F)
- (*D*) Group discussion (reply to the Discussion post, also make it resolved), 0.5 points (M)
- (D) Sharing solutions (create a note, not question, and tag m2, m3, d1), 0.5 points each (M)
- (M) Math homework, 1 point (M)
- (P) Programming homework, 8 points (M)
- (X) Exams, see Midterm page for past exams (same format this year).

Subgradient Descent

Kernel Trick 000000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Course Grades

- Final grade = $0.3 \cdot X + 0.1 \max(X, Q) + 0.1 \max(X, D) + 0.1 \max(X, M) + 0.4 \cdot P$
- Additional discussion points used in borderline grades (for example 89 to A).

Subgradient Descent

Kernel Trick 00000000000

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sharing Solutions

Use LaTeX (Word, Maple, MyScript etc).

sqrt ((a_1^2) / (2 pi)) is difficult to read compared to $\sqrt{\frac{a_1^2}{2\pi}}$.

- Handwritten on tablet or on paper and photo or scan (Office Lens).
- Other suggestions?

Kernel Trick 000000000000

Sharing Solutions

- For solution sharing, please make sure it is Piazza note, not a Piazza question.
- For actual questions, please use a different name, *e.g.*" *M*2Q1 Question" or "Question about *M*2Q1".
- Make sure you tag the post correctly: *m*2, *m*3, or *d*1 in order to get the points.
- Please sign up before making the post and please do not sign up for more than 4 questions per week.
- I will either "good note" the post or leave a comment: if I leave a comment, please update your answers, reply to my comment, and remember to make the reply "unresolved" so I can see.

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Maximum Margin Diagram

Kernel Trick 00000000000

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

SVM Weights

• Find the weights w_1 , w_2 for the SVM classifier $\mathbb{1}_{\{w_1x_{i1}+w_2x_{i2}+1\geq 0\}}$ given the training data $x_1 = \begin{bmatrix} 0\\0 \end{bmatrix}$ and $x_2 = \begin{bmatrix} 1\\1 \end{bmatrix}$ with $y_1 = 1, y_2 = 0$. • $A: w_1 = 0, w_2 = -2$ • $B: w_1 = -2, w_2 = 0$ • $C: w_1 = -1, w_2 = -1$ • $D: w_1 = -2, w_2 = -2$

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

SVM Weights Diagram

Kernel Trick

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

SVM Weights

• Find the weights w_1, w_2 for the SVM classifier $\mathbb{1}_{\{w_1 x_{i1} + w_2 x_{i2} + 1 \ge 0\}}$ given the training data $x_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ with $y_1 = 1, y_2 = y_3 = 0$. • $A : w_1 = -1.5, w_2 = -1.5$ • $B : w_1 = -2, w_2 = -1.5$ • $C : w_1 = -1.5, w_2 = -2$ • $D : w_1 = -2, w_2 = -2$ • F : I don't understand SVM

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

SVM Weights Diagram

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Constrained Optimization Diagram

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Constrained Optimization Derivation

• The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_i = 0$ and $y_i = 1$.

$$\max_{w} \frac{2}{\sqrt{w^{T}w}} \text{ such that } \begin{cases} \left(w^{T}x_{i}+b\right) \leqslant -1 & \text{ if } y_{i}=0\\ \left(w^{T}x_{i}+b\right) \geqslant 1 & \text{ if } y_{i}=1 \end{cases}, i=1,2,...,n$$

• This is equivalent to the following minimization problem, called hard margin SVM.

$$\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \geq 1, i = 1, 2, ..., n$$

Subgradient Descent

Kernel Trick 000000000000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Soft Margin Diagram

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Soft Margin Derivation

Subgradient Descent

Kernel Trick

SVM Formulations

• Hard margin: $\min_{w} \frac{1}{2} w^{T} w \text{ such that } (2y_{i} - 1) \left(w^{T} x_{i} + b \right) \ge 1, i = 1, 2, ..., n$

Soft margin:

$$\min_{w} \frac{\lambda}{2} w^{\mathsf{T}} w + \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - (2y_i - 1) \left(w^{\mathsf{T}} x_i + b\right)\right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Soft Margin

• Let
$$w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $b = 3$. For the point $x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$, $y = 0$, what is the smallest slack variable ξ for it to satisfy the margin constraint?

$$(2y_i-1)\left(w^Tx_i+b\right) \ge 1-\xi_i, \xi_i \ge 0$$

Subgradient Descent

Kernel Trick 00000000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Soft Margin 2 Quiz

• Let
$$w = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 and $b = 3$. For the point $x = \begin{bmatrix} -4 \\ -5 \end{bmatrix}$, $y = 0$, what is the smallest slack variable ξ for it to satisfy the margin constraint?

- *A* : −10
- *B* : 0
- *C* : 10
- D : None of the above
- E: I don't understand what is ξ

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Subgradient Descent

$$\min_{w} \frac{\lambda}{2} w^{T} w + \frac{1}{n} \sum_{i=1}^{n} \max\left\{0, 1 - (2y_{i} - 1) \left(w^{T} x_{i} + b\right)\right\}$$

- The gradient for the above expression is not defined at points with $1 (2y_i 1) (w^T x_i + b) = 0.$
- Subgradient can be used instead of a gradient.

Subgradient Descent

Kernel Trick 00000000000

<□ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Subgradient 1

- Which ones are subderivatives of max {x, 0} at x = 0?
- A : −1
- *B* : −0.5
- C : 0
- *D* : 0.5
- *E* : 1

 $\begin{array}{c} \text{Subgradient Descent} \\ \circ \circ \bullet \circ \circ \end{array}$

Kernel Trick

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Subgradient 2 Quiz

- Which ones are subderivatives of |x| at x = 0?
- A : −1
- *B* : −0.5
- C:0
- *D* : 0.5
- *E* : 1

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Subgradient Descent Step Definition

• One possible set of subgradients with respect to *w* and *b* are the following.

$$\partial_{w} C \ni \lambda w - \sum_{i=1}^{n} (2y_{i} - 1) x_{i} \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$
$$\partial_{b} C \ni - \sum_{i=1}^{n} (2y_{i} - 1)) \mathbb{1}_{\{(2y_{i} - 1)(w^{T}x_{i} + b) \ge 1\}}$$

• The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Regularization Parameter

$$w = w - \alpha \sum_{i=1}^{n} z_i \mathbb{1}_{\{z_i w \in \tau_{x_i} \ge 1\}} x_i - \lambda w$$
$$z_i = 2y_i - 1, i = 1, 2, ..., n$$

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in L2 regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

Subgradient Descent

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kernel Trick 1D Diagram

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kernelized SVM

- With a feature map φ , the SVM can be trained on new data points {($\varphi(x_1), y_1$), ($\varphi(x_2), y_2$), ..., ($\varphi(x_n), y_n$)}.
- The weights *w* correspond to the new features $\varphi(x_i)$.
- Therefore, test instances are transformed to have the same new features.

$$\hat{y}_i = \mathbb{1}_{\{w^{\mathcal{T}}\varphi(x_i) \ge 0\}}$$

Subgradient Descent

Kernel Trick

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Kernel Trick for XOR

• SVM with quadratic kernel $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$ can correctly classify the following training set?

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	1	1
1	0	1
1	1	0

Kernel Trick

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Kernel Trick for XOR

 SVM with kernel φ(x) = (x₁, x₁x₂, x₂) can correctly classify the following training set.

<i>x</i> ₁	<i>x</i> ₂	y
0	0	0
0	1	1
1	0	1
1	1	0

- *A* : True.
- B : False.

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kernel Matrix Definition

• The feature map is usually represented by a $n \times n$ matrix K called the Gram matrix (or kernel matrix).

$$K_{ii'} = \varphi(x_i)^T \varphi(x_{i'})$$

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Examples of Kernel Matrix Definition

• For example, if $\varphi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)$, then the kernel matrix can be simplified.

$$K_{ii'} = \left(x_i^T x_{i'}\right)^2$$

• Another example is the quadratic kernel $K_{ii'} = (x_i^T x_{i'} + 1)^2$. It can be factored to have the following feature representations.

$$\varphi(x) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1\right)$$

Kernel Trick

Examples of Kernel Matrix Derivation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kernel Trick

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Popular Kernels

• Other popular kernels include the following.

• Linear kernel:
$$K_{ii'} = x_i^T x_{i'}$$

- **2** Polynomial kernel: $K_{ii'} = (x_i^T x_{i'} + 1)^d$
- **3** Radial Basis Function (Gaussian) kernel: $K_{ii'} = \exp\left(-\frac{1}{\sigma^2} (x_i - x_{i'})^T (x_i - x_{i'})\right)$
- Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find *w* and *b* for these kernels.

Subgradient Descent

Kernel Trick

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Kernel Matrix

• What is the feature vector $\varphi(x)$ induced by the kernel $K_{ii'} = \exp(x_i + x_{i'}) + \sqrt{x_i x_{i'}} + 3?$

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kernel Matrix Math

Subgradient Descent

Kernel Trick

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Kernel Matrix 2

- What is the feature vector $\varphi(x)$ induced by the kernel $K_{ii'} = 4 \exp(x_i + x_{i'}) + 2x_i x_{i'}?$
- $A: (4 \exp(x), 2\sqrt{x})$
- $B: \left(2\exp\left(x\right), \sqrt{2}\sqrt{x}\right)$
- $C: (4 \exp(x), 2x)$
- $D: (2 \exp(x), \sqrt{2}x)$
- E : None of the above

Subgradient Descent

Kernel Trick

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Kernel Matrix Math 2 _{Quiz}