CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer
July 6, 2022

Adverse Selection

Quiz

- Suppose the last two digits of your 10-digit student ID is the expected grade (out of 100) you will get in a course. Choose between the two courses:
- A : a course in which you get your expected grade.
- B : a course in which you get the average expected grade of everyone taking this course.

Adverse Selection, ID

Quiz

- Enter the last two digits of your ID.

Course Rhythm

Admin

(1) (Q) In-class Quizzes, 0.5 points $(T-F)$
(2) (D) Group discussion (reply to the Discussion post, also make it resolved), 0.5 points (M)
(3) (D) Sharing solutions (create a note, not question, and tag $m 2, m 3, d 1$), 0.5 points each (M)
(0) (M) Math homework, 1 point (M)
(6) (P) Programming homework, 8 points (M)
© (X) Exams, see Midterm page for past exams (same format this year).

Course Grades

Admin

- Final grade $=0.3 \cdot X+0.1 \max (X, Q)+0.1 \max (X, D)+$ $0.1 \max (X, M)+0.4 \cdot P$
- Additional discussion points used in borderline grades (for example 89 to A).

Sharing Solutions

Admin

(1) Use LaTeX (Word, Maple, MyScript etc).
$\operatorname{sqrt}\left(\left(a_{-} 1^{\wedge} 2\right) /(2 p i)\right)$ is difficult to read compared to $\sqrt{\frac{a_{1}^{2}}{2 \pi}}$.
(2) Handwritten on tablet or on paper and photo or scan (Office Lens).
(3) Other suggestions?

Sharing Solutions

- For solution sharing, please make sure it is Piazza note, not a Piazza question.
- For actual questions, please use a different name, e.g." M2Q1 Question" or "Question about M2Q1".
- Make sure you tag the post correctly: $m 2, m 3$, or $d 1$ in order to get the points.
- Please sign up before making the post and please do not sign up for more than 4 questions per week.
- I will either "good note" the post or leave a comment: if I leave a comment, please update your answers, reply to my comment, and remember to make the reply "unresolved" so I can see.

Maximum Margin Diagram

Motivation

SVM Weights

Quiz

- Find the weights w_{1}, w_{2} for the SVM classifier
$\mathbb{1}_{\left\{w_{1} x_{i 1}+w_{2} x_{i 2}+1 \geqslant 0\right\}}$ given the training data $x_{1}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and

$$
x_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \text { with } y_{1}=1, y_{2}=0
$$

- $A: w_{1}=0, w_{2}=-2$
- $B: w_{1}=-2, w_{2}=0$
- $C: w_{1}=-1, w_{2}=-1$
- $D: w_{1}=-2, w_{2}=-2$

SVM Weights Diagram

Quiz

SVM Weights

Quiz

- Find the weights w_{1}, w_{2} for the SVM classifier $\mathbb{1}_{\left\{w_{1} x_{i 1}+w_{2} x_{i 2}+1 \geqslant 0\right\}}$ given the training data

$$
x_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], x_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], x_{3}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { with } y_{1}=1, y_{2}=y_{3}=0
$$

- $A: w_{1}=-1.5, w_{2}=-1.5$
- $B: w_{1}=-2, w_{2}=-1.5$
- $C: w_{1}=-1.5, w_{2}=-2$
- $D: w_{1}=-2, w_{2}=-2$
- $E: I$ don't understand SVM

SVM Weights Diagram

Quiz

Constrained Optimization Diagram

Definition

Constrained Optimization Derivation

Definition

- The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_{i}=0$ and $y_{i}=1$.
$\max _{w} \frac{2}{\sqrt{w^{\top} w}}$ such that $\left\{\begin{array}{ll}\left(w^{\top} x_{i}+b\right) \leqslant-1 & \text { if } y_{i}=0 \\ \left(w^{\top} x_{i}+b\right) \geqslant 1 & \text { if } y_{i}=1\end{array}, i=1,2, \ldots, n\right.$
- This is equivalent to the following minimization problem, called hard margin SVM.

$$
\min _{w} \frac{1}{2} w^{T} w \text { such that }\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right) \geqslant 1, i=1,2, \ldots, n
$$

Soft Margin Diagram

Definition

Soft Margin Derivation

Definition

SVM Formulations

Definition

- Hard margin:
$\min _{w} \frac{1}{2} w^{T} w$ such that $\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right) \geqslant 1, i=1,2, \ldots, n$
- Soft margin:

$$
\min _{w} \frac{\lambda}{2} w^{T} w+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right)\right\}
$$

Soft Margin
 Quiz

- Let $w=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $b=3$. For the point $x=\left[\begin{array}{l}4 \\ 5\end{array}\right], y=0$, what is the smallest slack variable ξ for it to satisfy the margin constraint?

$$
\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1-\xi_{i}, \xi_{i} \geqslant 0
$$

Soft Margin 2

Quiz

- Let $w=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $b=3$. For the point $x=\left[\begin{array}{l}-4 \\ -5\end{array}\right], y=0$, what is the smallest slack variable ξ for it to satisfy the margin constraint?
- $A:-10$
- $B: 0$
- C: 10
- D : None of the above
- $E: I$ don't understand what is ξ

Subgradient Descent

Definition

$$
\min _{w} \frac{\lambda}{2} w^{\top} w+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right)\right\}
$$

- The gradient for the above expression is not defined at points with $1-\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right)=0$.
- Subgradient can be used instead of a gradient.

Subgradient 1
 Quiz

- Which ones are subderivatives of $\max \{x, 0\}$ at $x=0$?
- $A:-1$
- $B:-0.5$
- C:0
- $D: 0.5$
- $E: 1$

Subgradient 2
 Quiz

- Which ones are subderivatives of $|x|$ at $x=0$?
- A : -1
- $B:-0.5$
- C:0
- $D: 0.5$
- $E: 1$

Subgradient Descent Step

Definition

- One possible set of subgradients with respect to w and b are the following.

$$
\begin{aligned}
& \partial_{w} C \ni \lambda w-\sum_{i=1}^{n}\left(2 y_{i}-1\right) x_{i} \mathbb{1}_{\left\{\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1\right\}} \\
& \left.\partial_{b} C \ni-\sum_{i=1}^{n}\left(2 y_{i}-1\right)\right) \mathbb{1}_{\left\{\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1\right\}}
\end{aligned}
$$

- The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Regularization Parameter

Definition

$$
\begin{aligned}
w & =w-\alpha \sum_{i=1}^{n} z_{i} \mathbb{1}_{\left\{z_{i} w^{T} x_{i} \geqslant 1\right\}} x_{i}-\lambda w \\
z_{i} & =2 y_{i}-1, i=1,2, \ldots, n
\end{aligned}
$$

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in $L 2$ regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

Kernel Trick 1D Diagram

Motivation

Kernelized SVM

Definition

- With a feature map φ, the SVM can be trained on new data points $\left\{\left(\varphi\left(x_{1}\right), y_{1}\right),\left(\varphi\left(x_{2}\right), y_{2}\right), \ldots,\left(\varphi\left(x_{n}\right), y_{n}\right)\right\}$.
- The weights w correspond to the new features $\varphi\left(x_{i}\right)$.
- Therefore, test instances are transformed to have the same new features.

$$
\hat{y}_{i}=\mathbb{1}_{\left\{w^{\top} \varphi\left(x_{i}\right) \geqslant 0\right\}}
$$

Kernel Trick for XOR

Quiz

- SVM with quadratic kernel $\varphi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$ can correctly classify the following training set?

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

Kernel Trick for XOR

Quiz

- SVM with kernel $\varphi(x)=\left(x_{1}, x_{1} x_{2}, x_{2}\right)$ can correctly classify the following training set.

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

- A: True.
- B : False.

Kernel Matrix

Definition

- The feature map is usually represented by a $n \times n$ matrix K called the Gram matrix (or kernel matrix).

$$
K_{i i^{\prime}}=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{i^{\prime}}\right)
$$

Examples of Kernel Matrix

Definition

- For example, if $\varphi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$, then the kernel matrix can be simplified.

$$
K_{i i^{\prime}}=\left(x_{i}^{\top} x_{i^{\prime}}\right)^{2}
$$

- Another example is the quadratic kernel $K_{i i^{\prime}}=\left(x_{i}^{T} x_{i^{\prime}}+1\right)^{2}$. It can be factored to have the following feature representations.

$$
\varphi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)
$$

Examples of Kernel Matrix Derivation

Definition

Popular Kernels

Discussion

- Other popular kernels include the following.
(1) Linear kernel: $K_{i i^{\prime}}=x_{i}^{T} x_{i^{\prime}}$
(2) Polynomial kernel: $K_{i i^{\prime}}=\left(x_{i}^{T} x_{i^{\prime}}+1\right)^{d}$
(3) Radial Basis Function (Gaussian) kernel:

$$
K_{i i^{\prime}}=\exp \left(-\frac{1}{\sigma^{2}}\left(x_{i}-x_{i^{\prime}}\right)^{T}\left(x_{i}-x_{i^{\prime}}\right)\right)
$$

- Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

Kernel Matrix

Quiz

- What is the feature vector $\varphi(x)$ induced by the kernel $K_{i i^{\prime}}=\exp \left(x_{i}+x_{i^{\prime}}\right)+\sqrt{x_{i} x_{i^{\prime}}}+3$?

Kernel Matrix Math

Quiz

Kernel Matrix 2

Quiz

- What is the feature vector $\varphi(x)$ induced by the kernel $K_{i i^{\prime}}=4 \exp \left(x_{i}+x_{i^{\prime}}\right)+2 x_{i} x_{i^{\prime}}$?
- $A:(4 \exp (x), 2 \sqrt{x})$
- $B:(2 \exp (x), \sqrt{2} \sqrt{x})$
- $C:(4 \exp (x), 2 x)$
- $D:(2 \exp (x), \sqrt{2} x)$
- E : None of the above

Kernel Matrix Math 2

Quiz

