CS540 Introduction to Artificial Intelligence Lecture 5

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer
July 5, 2022

Sharing Solutions

- For solution sharing, please make sure it is Piazza note, not a Piazza question.
- For actual questions, please use a different name, e.g." M2Q1 Question" or "Question about M2Q1".
- Make sure you tag the post correctly: $m 2, m 3$, or $d 1$ in order to get the points.
- Please sign up before making the post and please do not sign up for more than 4 questions per week.
- I will either "good note" the post or leave a comment: if I leave a comment, please update your answers, reply to my comment, and remember to make the reply "unresolved" so I can see.

Margin and Support Vectors

Motivation

- The perceptron algorithm finds any line (w, b) that separates the two classes.

$$
\hat{y}_{i}=\mathbb{1}_{\left\{w^{\top} x_{i}+b \geqslant 0\right\}}
$$

- The margin is the maximum width (thickness) of the line before hitting any data point.
- The instances that the thick line hits are called support vectors.
- The model that finds the line that separates the two classes with the widest margin is called support vector machine (SVM).

Support Vector Machine

Description

- The problem is equivalent to minimizing the squared norm of the weights $\|w\|^{2}=w^{T} w$ subject to the constraint that every instance is classified correctly (with the margin).
- Use subgradient descent to find the weights and the bias.

Finding the Margin

Definition

- Define two planes: plus plane $w^{T} x+b=1$ and minus plane $w^{\top} x+b=-1$.
- The distance between the two planes is $\frac{2}{\sqrt{w^{T} w}}$.
- If all of the instances with $y_{i}=1$ are above the plus plane and all of the instances with $y_{i}=0$ are below the minus plane, then the margin is $\frac{2}{\sqrt{w^{\top} w}}$.

Constrained Optimization

Definition

- The goal is to maximize the margin subject to the constraint that the plus plane and the minus plane separates the instances with $y_{i}=0$ and $y_{i}=1$.
$\max _{w} \frac{2}{\sqrt{w^{\top} w}}$ such that $\left\{\begin{array}{ll}\left(w^{T} x_{i}+b\right) \leqslant-1 & \text { if } y_{i}=0 \\ \left(w^{\top} x_{i}+b\right) \geqslant 1 & \text { if } y_{i}=1\end{array}, i=1,2, \ldots, n\right.$
- The two constraints can be combined.
$\max _{w} \frac{2}{\sqrt{w^{T} w}}$ such that $\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right) \geqslant 1, i=1,2, \ldots, n$

Hard Margin SVM

Definition

$\max _{w} \frac{2}{\sqrt{w^{\top} w}}$ such that $\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right) \geqslant 1, i=1,2, \ldots, n$

- This is equivalent to the following minimization problem, called hard margin SVM.
$\min _{w} \frac{1}{2} w^{T} w$ such that $\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1, i=1,2, \ldots, n$

Soft Margin

Definition

- To allow for mistakes classifying a few instances, slack variables are introduced.
- The cost of violating the margin is given by some constant $\frac{1}{\lambda}$.
- Using slack variables ξ_{i}, the problem can be written as the following.
$\min _{w} \frac{1}{2} w^{T} w+\frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$
such that $\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1-\xi_{i}, \xi_{i} \geqslant 0, i=1,2, \ldots, n$

Soft Margin SVM

Definition

$\min _{w} \frac{1}{2} w^{T} w+\frac{1}{\lambda} \frac{1}{n} \sum_{i=1}^{n} \xi_{i}$
such that $\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right) \geqslant 1-\xi_{i}, \xi_{i} \geqslant 0, i=1,2, \ldots, n$

- This is equivalent to the following minimization problem, called soft margin SVM.

$$
\min _{w} \frac{\lambda}{2} w^{T} w+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right)\right\}
$$

Subgradient Descent

Definition

$$
\min _{w} \frac{\lambda}{2} w^{T} w+\frac{1}{n} \sum_{i=1}^{n} \max \left\{0,1-\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right)\right\}
$$

- The gradient for the above expression is not defined at points with $1-\left(2 y_{i}-1\right)\left(w^{T} x_{i}+b\right)=0$.
- Subgradient can be used instead of a gradient.

Subgradient

- The subderivative at a point of a convex function in one dimension is the set of slopes of the lines that are tangent to the function at that point.
- The subgradient is the version for higher dimensions.
- The subgradient $\partial f(x)$ is formally defined as the following set.

$$
\partial f(x)=\left\{v: f\left(x^{\prime}\right) \geqslant f(x)+v^{T}\left(x^{\prime}-x\right) \forall x^{\prime}\right\}
$$

Subgradient Descent Step

Definition

- One possible set of subgradients with respect to w and b are the following.

$$
\begin{aligned}
& \partial_{w} C \ni \lambda w-\sum_{i=1}^{n}\left(2 y_{i}-1\right) x_{i} \mathbb{1}_{\left\{\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1\right\}} \\
& \left.\partial_{b} C \ni-\sum_{i=1}^{n}\left(2 y_{i}-1\right)\right) \mathbb{1}_{\left\{\left(2 y_{i}-1\right)\left(w^{\top} x_{i}+b\right) \geqslant 1\right\}}
\end{aligned}
$$

- The gradient descent step is the same as usual, using one of the subgradients in place of the gradient.

Class Notation and Bias Term

Definition

- Usually, for SVM, the bias term is not included and updated. Also, the classes are -1 and +1 instead of 0 and 1 . Let the labels be $z_{i} \in\{-1,+1\}$ instead of $y_{i} \in\{0,1\}$. The gradient steps are usually written the following way.

$$
\begin{aligned}
& w=(1-\lambda) w-\alpha \sum_{i=1}^{n} z_{i} \mathbb{1}_{\left\{z_{i} w^{T} x_{i} \geqslant 1\right\}} x_{i} \\
& z_{i}=2 y_{i}-1, i=1,2, \ldots, n
\end{aligned}
$$

Regularization Parameter

Definition

$$
\begin{aligned}
w & =w-\alpha \sum_{i=1}^{n} z_{i} \mathbb{1}_{\left\{z_{i} w^{T} x_{i} \geqslant 1\right\}} x_{i}-\lambda w \\
z_{i} & =2 y_{i}-1, i=1,2, \ldots, n
\end{aligned}
$$

- λ is usually called the regularization parameter because it reduces the magnitude of w the same way as the parameter λ in $L 2$ regularization.
- The stochastic subgradient descent algorithm for SVM is called PEGASOS: Primal Estimated sub-GrAdient SOlver for Svm.

PEGASOS Algorithm

Algorithm

- Inputs: instances: $\left\{x_{i}\right\}_{i=1}^{n}$ and $\left\{z_{i}=2 y_{i}-1\right\}_{i=1}^{n}$
- Outputs: weights: $\left\{w_{j}\right\}_{j=1}^{m}$
- Initialize the weights.

$$
w_{j} \sim \operatorname{Unif}[0,1]
$$

- Randomly permute (shuffle) the training set and performance subgradient descent for each instance i.

$$
w=(1-\lambda) w-\alpha z_{i} \mathbb{1}_{\left\{z_{i} w^{\top} x_{i} \geqslant 1\right\}} x_{i}
$$

- Repeat for a fixed number of iterations.

Kernel Trick

Motivation

- If the classes are not linearly separable, more features can be created.
- For example, a 1 dimensional x can be mapped to $\varphi(x)=\left(x, x^{2}\right)$.
- Another example is to map a 2 dimensional $\left(x_{1}, x_{2}\right)$ to $\varphi\left(x=\left(x_{1}, x_{2}\right)\right)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$.

Kernelized SVM

Definition

- With a feature map φ, the SVM can be trained on new data points $\left\{\left(\varphi\left(x_{1}\right), y_{1}\right),\left(\varphi\left(x_{2}\right), y_{2}\right), \ldots,\left(\varphi\left(x_{n}\right), y_{n}\right)\right\}$.
- The weights w correspond to the new features $\varphi\left(x_{i}\right)$.
- Therefore, test instances are transformed to have the same new features.

$$
\hat{y}_{i}=\mathbb{1}_{\left\{w^{\top} \varphi\left(x_{i}\right) \geqslant 0\right\}}
$$

Kernel Matrix

Definition

- The feature map is usually represented by a $n \times n$ matrix K called the Gram matrix (or kernel matrix).

$$
K_{i i^{\prime}}=\varphi\left(x_{i}\right)^{T} \varphi\left(x_{i^{\prime}}\right)
$$

Examples of Kernel Matrix

Definition

- For example, if $\varphi(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)$, then the kernel matrix can be simplified.

$$
K_{i i^{\prime}}=\left(x_{i}^{T} x_{i^{\prime}}\right)^{2}
$$

- Another example is the quadratic kernel $K_{i i^{\prime}}=\left(x_{i}^{\top} x_{i^{\prime}}+1\right)^{2}$. It can be factored to have the following feature representations.

$$
\varphi(x)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right)
$$

Kernel Matrix Characterization

Discussion

- A matrix K is kernel (Gram) matrix if and only if it is symmetric positive semidefinite.
- Positive semidefiniteness is equivalent to having non-negative eigenvalues.

Popular Kernels

Discussion

- Other popular kernels include the following.
(1) Linear kernel: $K_{i i^{\prime}}=x_{i}^{T} x_{i^{\prime}}$
(2) Polynomial kernel: $K_{i i^{\prime}}=\left(x_{i}^{T} x_{i^{\prime}}+1\right)^{d}$
(3) Radial Basis Function (Gaussian) kernel:

$$
K_{i i^{\prime}}=\exp \left(-\frac{1}{\sigma^{2}}\left(x_{i}-x_{i^{\prime}}\right)^{T}\left(x_{i}-x_{i^{\prime}}\right)\right)
$$

- Gaussian kernel has infinite-dimensional feature representations. There are dual optimization techniques to find w and b for these kernels.

