CS540 Introduction to Artificial Intelligence Lecture 6

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 6, 2022

Hat Game

Quiz

- 5 kids are wearing either green or red hats in a party: they can see every other kid's hat but not their own.
- Dad said to everyone: at least one of you is wearing green hat.
- Dad asked everyone: do you know the color of your hat?
- Everyone said no. ___ at least 2

Everyone said no.

- Dad asked again: do you know the color of your hat?
- Some kids (at least one) said yes.
- No one lied. How many kids are wearing green hats?
- A: 1... B: 2... C: 3... D: 4... E: 5

Hat Game Diagram

Discussion

Discussion Grades Admin

- The Discussion grades for week 1 is still computed incorrectly: will try to fix tonight.
- The past exam links are fixed, please refresh the pages.
- The list of relavent past exam questions are on the Q1, Q2, etc, pages.
- Please do NOT start the homework that are not announced yet! Especially please do not share solutions to those.

Discussion Posts

- Complete slides are listed as "Blank Slides".
- The slides used during the lectures are listed as "Blank Slides with Blank Pages for Quiz Questions".
- Shared solutions should explain how you get the solutions, a post will not get points if it just says "according to the hints, ...".
- Link to MyScript and Maple App on W1 page.

Axes Aligned Decision Boundary

Motivation

Decision Tree

Description

- Find the feature that is the most informative
- Split the training set into subsets according to this feature.
- Repeat on the <u>subsets until</u> all the labels in the subset are the same.

Binary Entropy

Definition

- Entropy is the measure of uncertainty.
- The value of something uncertain is more informative than the value of something certain.
- For binary labels, $y_i \in \{0, 1\}$, suppose p_0 fraction of labels are 0 and $1 p_0 = p_1$ fraction of the training set labels are 1, the entropy is:

$$H(Y) = p_0 \log_2 \left(\frac{1}{p_0}\right) + p_1 \log_2 \left(\frac{1}{p_1}\right)$$

$$= -p_0 \log_2 (p_0) - p_1 \log_2 (p_1)$$

0,5

Entropy

Definition

• If there are K classes and p_y fraction of the training set labels are in class y, with $y \in \{1, 2, ..., K\}$, the entropy is:

$$H(Y) = \sum_{y=1}^{K} p_y \log_2 \left(\frac{1}{p_y}\right)$$
$$= -\sum_{y=1}^{K} p_y \log_2 (p_y)$$

Entropy Quiz

• Running from You-Know-Who, Harry enters the CS building on the 1st floor. He flips a fair coin: if it is heads he hides in room 1325; otherwise, he climbs to the 2nd floor. In that case, he flips the coin again: if it is heads he hides in CSL; otherwise, he climbs to the 3rd floor and hides in 3331. What is the entropy of Harry's location?

is the entropy of Harry's location?

$$-\sum_{1}^{1} g_{2} p_{1}$$
 $-\sum_{2}^{1} \log_{2} \frac{1}{2} - \frac{1}{4} g_{2} \frac{1}{4} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} =$

Entropy Math Quiz

Entropy 2

 A bag contains a red ball, a green ball, a blue ball, and a black ball. Randomly draw a ball from the bag with equal probability. What is the entropy of the outcome?

• A:1

B: log₂ (3)

• C: 1.5

• D:2

E: I don't understand entropy

Conditional Entropy

Definition

 Conditional entropy is the entropy of the conditional distribution. Let K_X be the possible values of a feature X and K_Y be the possible labels Y. Define p_X as the fraction of the instances that are x, and p_{y|X} as the fraction of the labels that are y among the ones with instance x.

$$H(Y|X = x) = -\sum_{y=1}^{K_Y} p_{y|x} \log_2(p_{y|x})$$

$$C_X$$

$$H(Y|X) = \sum_{x=1}^{K_X} p_x H(Y|X = x)$$

Aside: Cross Entropy

Definition

 Cross entropy measures the difference between two distributions.

$$H(Y,X) = -\sum_{z=1}^{K} p_{Y=z} \log_2(p_{X=z})$$

$$\text{Characle produced by the difference}$$

 It is used in logistic regression to measure the difference between actual label Y_i and the predicted label A_i for instance i, and at the same time, to make the cost convex.

$$H(Y_i, A_i) = -y_i \log(a_i) - (1 - y_i) \log(1 - a_i)$$

Information Gain

Definition

 The information gain is defined as the difference between the entropy and the conditional entropy.

$$I(Y|X) = H(Y) - H(Y|X).$$

 The larger than information gain, the larger the reduction in uncertainty, and the better predictor the feature is.

Splitting Discrete Features

Definition

 The most informative feature is the one with the largest information gain.

$$\underset{j}{\operatorname{argmax}} \underbrace{I(Y|X_{j})}_{j}$$

• Splitting means dividing the training set into K_{X_i} subsets.

$$\{(x_i, y_i) : x_{ij} = 1\}, \{(x_i, y_i) : x_{ij} = 2\}, ..., \{(x_i, y_i) : x_{ij} = K_{X_j}\}$$

Splitting Continuous Variables Diagram

Definition

$$\begin{cases} X_1 \leq 1 & \forall X_1 > 1 \\ X_1 \leq 2 & \forall X_2 > 2 \\ X_1 \leq 3 & \forall X_2 > 3 \end{cases}$$

ID3 Algorithm (Iterative Dichotomiser 3) Description

- Find the feature that is the most informative.
- Split the training set into subsets according to this feature.
- Repeat on the subsets until all the labels in the subset are the same.

Pruning Diagram

Discussion

Boosting Diagram Discussion

bt,
incorrectly DT,

K Nearest Neighbor 3NN

Description

- Given a new instance, find the K instances in the training set that are the closest.
- Predict the label of the new instance by the majority of the labels of the K instances.

Distance Function

Definition

 Many distance functions can be used in place of the Euclidean distance.

$$\rho(x, x') = ||x - x'||_2 = \sqrt{\sum_{j=1}^{m} (x_j - x_j')^2}$$

An example is Manhattan distance.

$$\rho\left(x,x'\right) = \sum_{j=1}^{m} \left|x_j - x_j'\right|$$

Manhattan Distance Diagram

Definition

1 Nearest Neighbor Quiz

Find the 1 Nearest Neighbor label for

using Manhattan

distance.

	Α	:	0	7
_	D		1	

λ	1	1		3	5	2	M/
λ	(2	1	7	3	4	5	1
	y	0	1	1	0	B	/
dis	t	7	3	<u> </u>	4	2	

3 Nearest Neighbor

Quiz

using Manhattan/

• Find the 3 Nearest Neighbor label for

distance.

<i>x</i> ₁	1	1	3	5	2
<i>x</i> ₂	1	7	3	4	5
У	0	1	1	0	0
lig	4	6	0	3	3

B:1

C: I don't indestand KNN.

K Fold Cross Validation Discussion

- Partition the training set into K groups.
- Pick one group as the validation set.
- Train the model on the remaining training set.
- Repeat the process for each of the K groups.
- Compare accuracy (or cost) for models with different hyperparameters and select the best one.

Discussion

1 fely cfly stoly

Leave One Out Cross Validation

Discussion

• If K = n, each time exactly one training instance is left out as the validation set. This special case is called Leave One Out Cross Validation (LOOCV).

Cross Validation

 Given the following training data. What is the 2 fold cross-validation accuracy if 1 nearest neighbor classifier with Manhattan distance is used? The first fold is the first five

Cross Validation 2 Quiz

 Given the following training data. What is the 10 fold cross-validation (LOOCV) accuracy if 1 nearest neighbor classifier with Manhattan distance is used?

6 - 6%