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CS540 Introduction to Artificial Intelligence

Lecture 7

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

July 12, 2022
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Exam Date
Admin

Q|

— (@ July 26 AND 27 (in person and or_online) from 1: 00 to
— ————

2 : 30. I
e July 27 (online only, with the other section) from 5:30to <
8 : 30.

@ A: [ will be available on July 26 AND 27 from 1 : 00 to 2 : 30.
e B : [ will be available on July 27 from 5 : 30 to 8 : 30.

@ C :/ am not available on both dates (email me).

L
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Midterm Details
Admin

@ July 26 AND July 27 from 1: 00 to 2 : 30:

G Complete the exam online at home and join by Zoom for
announcements.

L‘i Complete the exam online in person here, bring your laptop.
©

Request a paper copy of the exam and submit the answer
sheet (| need to know the number of exams to print).
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Midterm Coverage
Admin

| | Thur
More midterm-related details next Mefiday:

(@ ~ 10 questions from M2 to M7 (same question different
randomization).

@ ~ 10 questions from relavent questions on X1, X2, X3, and

In-class quizzes Q1 to C\)i/2 d B

© ~ 10 new questions.

e All questions have the format: enter a number, vector, matrix
or select multiple options. —
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Coordination Game
Quiz

% @ You are not allowed to discuss anything about this question in
chat. There will be around 10 new questions on the midterm
exam. | will post n of them before the exam (this weekend):

e A:n=0.
—= @ B:n=1if more than 50 percent of you choose B. @%
— . n = 2 if more than 75 percent of you choose C. —

= 3 if more than 95 percent of you choose D.
:n=0.
e | will repeat this question a second time. If you fail to

coordinate both times, | will not post any of the new
questions.
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Computer Vision Demos
~Motivation
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Tokenization

Motivation

@ When processing language, documents (called corpus) need to
be turned into a sequence of tokens.

@ Split the string by space and punctuations. P}

" "

@ Remove stopwords such as "the”, "of", "a", "with" ...

S——
_/@ Lower case all characters.

© Stemming or lemmatization words: make "looks", "looked",
" looking” to "look” . -
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Vocabulary

Motivation

e Word token is an occurrence of a word.
=

e Word type is a unique token as a dictionary entry.
- o ik

e Vocabulary is the set of word types.

@ Characters can be used in place of words as tokens. In this

"n " nmn "

case, the types are A b”...."z", " ", and vocabulary is F}
the alphabet. S
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Bag of Words Features

Definition

@ Given a document /i and vocabulary with size m, let ¢;; be the
y . - - .
count of the word j in the document / for j = 1,2, ..., m.

e Bag of words representation of a document has features that
are the count of each word divided by the total number of

words in the document. :

Ci;
Xij = i
2 i U
j'=1

a S Xe Ka u ks
L o G rovt we anp
S:tlil W«\’ﬁg._ B

L wom‘; k4 ovdls |
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Bag of Words Features Example

Motivation

e Given a training set the set of documents is called a corpus.
"1 .am Groot”, "I am Groot”, ... (9 times),
" n nmon —{—"_
"We are Groot”. The vocabulary is"1” "am” " Groot” "we"
"are”, then the bag of words features will have the following

trainlng set. <y

L Ko X
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— 7 [ 3]1313
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1 | 1
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TF IDF Features

Definition

@ Another feature representation is called tf-idf, which stands
for normalized term frequency, inverse (ciocument frequency.

Cij . n
tf,'j= 2 ,|dfj=|og . 7
mgx Cij’

’ 3 L{cj>0)

=1

Xjj = tf,'jidfj

_— . )

@ nis the total number of documents and E Il{c,_>0} Is the
. if
[:

number of documents containing word J.

Sampling
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Unigram Model o _
Definition\

e Unigram models assume independence.

S[W‘P\Q hol menfio,
(&

d
P{z1,22,.... 24} = | [ P {2}
« == = — tzl%

@ In general, two events A and B are independent if:
P{A|B} =P{A} or P{A, B} =P{A}P{B}

bq‘

@ For a sequence of words, independence means:

P {ztlzt—lv Zt—24 een; Z].} - IEZ[_}_

—_—, — —
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Maximum Likelihood Estimation

Definition

@ P{z} can be estimated by the count of the word z

maximizes the probability of observing the sentences in the

@ This is called the maximum likelihood estimator because itt‘
training set.



Computer Vision Natural Language Processing Sampling
00Q00 Q000000e00000000000000 0000

N - gigram Model

Definition

\3(/1.,\',

e Bigram models assume_Markov property

o
P{z,z,..., zd} = ]P’{zl}l_[ﬂ”{zt|2t 1}

== T t=2
e Markov property means the distribution of an element in the
sequence only depends on the previous element.

. 21} — P{Zt|zt—1}

Zt—2, ..
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Markov Chain Demo

Motivation
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Conditional Probability

Definition

e In general, the conditional probability of an event A given
another event B is the probability of A and B occurring at the
same time divided by the probability of event B.

riae) - H1AO

e For a sequence of words, the conditional probability of
observing z; given z; 1 is observed is the probability of
observing both divided by the probability of observing z;_1

first. 1 P{z 1~Zt}] 2 th 1]

EZtth—l} = P{Zt—l} _—f/fz_ t‘,p..J

Ch — 0.5 -

P13
Qm,t - | P
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Bigram Model Estimation

Definition

e Using the conditional probability formula, P {z;|z; 1}, called
transition probabilities, can be estimated by counting all
bigrams and unigrams.
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Unigram MLE Probability
Quiz

Drgﬁwl.LS: — P, 1L

gl P}~ &%
@ Given the training data (' l\am Grog¥ am [%/with thram
model, what is the probabilifyof observing a new sentence " |

am |7 =
g Mh'ﬁmm A N A
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Bigram MLE Probability
Quiz

@ Given the training data "I am Groot am |”, with the bigram
model, what is the probability of observing a new sentence "|
am |" given the first word is " 1”7
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Unigram MLE Probability
Quiz

e Given the training data "I am Groot am ", with the unigram
model, what is the probability of observing a new sentence " |

am Groot"?
@ A: [ am Groot (translation: | don't understand). [)1({,
e B: 22—5 O
4 P{( 1 O\ th‘j
o C: —
25 \ /\ r A\
@ L) Pisim - fr Fant ]
1
JE. 8 « 2 2. L
125 = IS S S
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Bigram MLE Probability
Quiz

@ Given the training data "| am Groot am I", with the bigram
model, what is the probability of observing a new sentence " |
am Groot” given the first word is "|"?

@ A: [ am Groot (translation: | don't understand).

1
OBZ
W/Cﬂl
0 g

1
e D15
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Transition Matrix

Definition

@ These probabilities can be stored in a matrix called transition
atrlx of a Markov Chain. The number on row j column j' is
the estimated probability P {j’|j}. If there are 3 tokens
{1,2, 3}, the transjtion matné is the following.

[P P21} PERTY et et
2 [PALR} P{2]2) 2———» g

/’7{_1?{1 3} P{2]3} 3}

@ Given the initial distribution of tokens, the distribution of the
next token can be found by multiplying it by the transition
probabilities.
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Estimating Transition Matrix

Definition
Suppose the vocabulary is "I", "am”, " Groot”, "we", "are", and
the training set contains 9 "I am Groot” then 1 "We are Groot".
Then the transition matrix is:

— | | am | Grogt | we | are

| 40 1170 )Y O | @

am _ 0 /‘\ 0| O

8& | pNI

Groot 5 0 0 3 0

we 0] O 0 0 1

\ are | 0| O 110 0
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Trigram Model

Definition
"
Pr rc""-/1 am]
@ The same formula can be applied to trigram: sequences of
three tokens. INCT~ &
Pladronzogl = 2250 Coman

Cze 5,201 il
’W 2 Cz %an ; o

@ In a document, likely, these longer sequences of tokens never\‘

I +
appear. In those cases, the probabilities areﬁ. Igecause of o
0 d arg

this, Laplace smoothing adds 1 to all counts. .
—7<—____—————‘ - K\
P C +1) L
P{zt|zt—1,ze—2} = Zt—2,7t—1,Z
o Czt—2,Zt_1 + m ‘
=~ )z ol vocal

V\eﬁu lCN ’ZW'I;‘OV;
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Laplace Smoothing

Definition

e Laplace smoothing should be used for bigram and unigram

models too.
A C.Z Z
P{zt|zs_1} = ———== £
(z1]2:-1) ZHM
" C +1
IP{Zt}= mZt
Zcz+m
Zm=)

@ Aside: Laplace smoothing can also be used m\decusmn tree
training to compute entropy. N
phyg

\' C‘ffl,’-‘

Cy 5
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Smoothing Example
Quiz

e Given a vocabulary of 106 a document with 10'? tokens with
CGroot = 3. What is the MLE estimation of-T Groot } with
and without Laplace smoothing?

wth Lﬁrlaco_
\:):'gaoo‘tj = CCMtﬂ ﬂ‘

A veords + WA 10 +Ip*
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Smoothing Example 2
Quiz

@ Given the training instance with 9 "| am Groot” followed by 1
"We are Groot”, what is the MLE estimation of P { Groot }

with Taplace smoothing? i
@ A: [ am Groot (translation: | don't understand).
11
B ; 35
. C. 1 \ /‘O -+ }
?1 30 + &
o D: 31
o E: 1

4
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Smoothing Example 3
Quiz

- what is the MLE estlmatlon of ]P’ Groot | | } MMS

aplace smoothlng7 _H} PPWQJ n S

c +
pf Gantl] e ——— L

—> Z Ahn C} )0
! Qv\)a( ( S \{,)
7 ’
l
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Sampling from Discrete Distribution

Discussion

Co, )
umll"[o\m‘ ()

e To generate new sentences given an N gram model, random
realizations need to be generated given the conditional
probability distribution.

@ Given the first N — 1 words, z;. 25, ..., zy 1, the distribution of
next word is approximated by
Dy = lf”{zN = x|zy-1,2Nn-2, ..., z1}. This process then can be
repeated for on ;2—5 ...vZN—1. 2N and so on.
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CDF Inversion Method Diagram
Discussion 2. 92
1 om Gyt ()l/ 2 ))
7( O\S Ot)\ 013 = Mnl‘[%nr,.
v T |
1 C.. 'S O ot
C —r /e {
Ov) 0.3
E}———'
C vor\_
CDF_ ! '-J.o-L =
o os vl |
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Generating New Words 1
Quiz
@ Given the transition matrix for words "I" "am” " Groot”,
starting a sentence with the "|" and a uniform random
variable u =05 is produced W at Is the next word?
( 0;1) _aw | 0. ) —

o+ Q ot o4 | g
?%C&t 1 “:‘"\ Croot
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Generating New Words 2
Quiz

Q2

@ Given the transition matrix for words " am” " Groot”,

\
starting a sentence with the and a uniform random

variable u = 0.75 is produced What is the next word?

L gu G
1{91 05 0.4
awml 0.2 0.4 0.4,I — =}
Gr1 0.3 02 0.5 o2 P At
- o ox ob )
e A:/, B: am,\‘C: Grooﬁi D: | don't understand

— oy
P> = g





