CS540 Introduction to Artificial Intelligence Lecture 7

Young Wu

Based on lecture slides by Jerry Zhu, Yingyu Liang, and Charles Dyer

$$
\text { July 12, } 2022
$$

Exam Date

Admin

Midterm Details

Admin

Midterm Coverage

Admin

Coordination Game
 Quiz

Computer Vision Demos

Motivation

Tokenization

Motivation

- When processing language, documents (called corpus) need to be turned into a sequence of tokens.
(1) Split the string by space and punctuations.
(2) Remove stopwords such as "the", "of", "a", " with" ...
(3) Lower case all characters.
(9) Stemming or lemmatization words: make "looks", "looked", "looking" to "look".

Vocabulary

Motivation

- Word token is an occurrence of a word.
- Word type is a unique token as a dictionary entry.
- Vocabulary is the set of word types.
- Characters can be used in place of words as tokens. In this case, the types are "a", " b ", \ldots, " z ", " ", and vocabulary is the alphabet.

Bag of Words Features

Definition

- Given a document i and vocabulary with size m, let $c_{i j}$ be the count of the word j in the document i for $j=1,2, \ldots, m$.
- Bag of words representation of a document has features that are the count of each word divided by the total number of words in the document.

$$
x_{i j}=\frac{c_{i j}}{\sum_{j^{\prime}=1}^{m} c_{i j^{\prime}}}
$$

Bag of Words Features Example

Motivation

TF IDF Features

Definition

- Another feature representation is called tf-idf, which stands for normalized term frequency, inverse document frequency.

$$
\begin{aligned}
\mathrm{tf}_{i j} & =\frac{c_{i j}}{\max _{j^{\prime}} c_{i j^{\prime}}}, \operatorname{idf}_{j}=\log \frac{n}{\sum_{i=1}^{n} \mathbb{1}_{\left\{c_{i j}>0\right\}}} \\
x_{i j} & =\operatorname{tf}_{i j} \mathrm{idf}_{j}
\end{aligned}
$$

- n is the total number of documents and $\sum_{i=1}^{n} \mathbb{1}_{\left\{c_{i j}>0\right\}}$ is the number of documents containing word j.

Unigram Model

Definition

- Unigram models assume independence.

$$
\mathbb{P}\left\{z_{1}, z_{2}, \ldots, z_{d}\right\}=\prod_{t=1}^{d} \mathbb{P}\left\{z_{t}\right\}
$$

- In general, two events A and B are independent if:

$$
\mathbb{P}\{A \mid B\}=\mathbb{P}\{A\} \text { or } \mathbb{P}\{A, B\}=\mathbb{P}\{A\} \mathbb{P}\{B\}
$$

- For a sequence of words, independence means:

$$
\mathbb{P}\left\{z_{t} \mid z_{t-1}, z_{t-2}, \ldots, z_{1}\right\}=\mathbb{P}\left\{z_{t}\right\}
$$

Maximum Likelihood Estimation

Definition

- $\mathbb{P}\left\{z_{t}\right\}$ can be estimated by the count of the word z_{t}.

$$
\hat{\mathbb{P}}\left\{z_{t}\right\}=\frac{c_{z_{t}}}{\sum_{z=1}^{m} c_{z}}
$$

- This is called the maximum likelihood estimator because it maximizes the probability of observing the sentences in the training set.

Bigram Model

Definition

- Bigram models assume Markov property.

$$
\mathbb{P}\left\{z_{1}, z_{2}, \ldots, z_{d}\right\}=\mathbb{P}\left\{z_{1}\right\} \prod_{t=2}^{d} \mathbb{P}\left\{z_{t} \mid z_{t-1}\right\}
$$

- Markov property means the distribution of an element in the sequence only depends on the previous element.

$$
\mathbb{P}\left\{z_{t} \mid z_{t-1}, z_{t-2}, \ldots, z_{1}\right\}=\mathbb{P}\left\{z_{t} \mid z_{t-1}\right\}
$$

Markov Chain Demo

Motivation

Conditional Probability

Definition

- In general, the conditional probability of an event A given another event B is the probability of A and B occurring at the same time divided by the probability of event B.

$$
\mathbb{P}\{A \mid B\}=\frac{\mathbb{P}\{A B\}}{\mathbb{P}\{B\}}
$$

- For a sequence of words, the conditional probability of observing z_{t} given z_{t-1} is observed is the probability of observing both divided by the probability of observing z_{t-1} first.

$$
\mathbb{P}\left\{z_{t} \mid z_{t-1}\right\}=\frac{\mathbb{P}\left\{z_{t-1}, z_{t}\right\}}{\mathbb{P}\left\{z_{t-1}\right\}}
$$

Bigram Model Estimation

Definition

- Using the conditional probability formula, $\mathbb{P}\left\{z_{t} \mid z_{t-1}\right\}$, called transition probabilities, can be estimated by counting all bigrams and unigrams.

$$
\hat{\mathbb{P}}\left\{z_{t} \mid z_{t-1}\right\}=\frac{c_{z_{t-1}, z_{t}}}{c_{z_{t-1}}}
$$

Unigram MLE Probability

Quiz

Bigram MLE Probability

Quiz

Unigram MLE Probability

Quiz

Bigram MLE Probability

Quiz

Transition Matrix

Definition

- These probabilities can be stored in a matrix called transition matrix of a Markov Chain. The number on row j column j^{\prime} is the estimated probability $\hat{\mathbb{P}}\left\{j^{\prime} \mid j\right\}$. If there are 3 tokens $\{1,2,3\}$, the transition matrix is the following.

$$
\left[\begin{array}{lll}
\hat{\mathbb{P}}\{1 \mid 1\} & \hat{\mathbb{P}}\{2 \mid 1\} & \hat{\mathbb{P}}\{3 \mid 1\} \\
\hat{\mathbb{P}}\{1 \mid 2\} & \hat{\mathbb{P}}\{2 \mid 2\} & \hat{\mathbb{P}}\{3 \mid 2\} \\
\hat{\mathbb{P}}\{1 \mid 3\} & \hat{\mathbb{P}}\{2 \mid 3\} & \hat{\mathbb{P}}\{3 \mid 3\}
\end{array}\right]
$$

- Given the initial distribution of tokens, the distribution of the next token can be found by multiplying it by the transition probabilities.

Estimating Transition Matrix

Definition

Trigram Model

Definition

- The same formula can be applied to trigram: sequences of three tokens.

$$
\hat{\mathbb{P}}\left\{z_{t} \mid z_{t-1}, z_{t-2}\right\}=\frac{c_{z_{t-2}, z_{t-1}, z_{t}}}{c_{z_{t-2}, z_{t-1}}}
$$

- In a document, likely, these longer sequences of tokens never appear. In those cases, the probabilities are $\frac{0}{0}$. Because of this, Laplace smoothing adds 1 to all counts.

$$
\hat{\mathbb{P}}\left\{z_{t} \mid z_{t-1}, z_{t-2}\right\}=\frac{c_{z_{t-2}, z_{t-1}, z_{t}}+1}{c_{z_{t-2}, z_{t-1}}+m}
$$

Laplace Smoothing

Definition

- Laplace smoothing should be used for bigram and unigram models too.

$$
\begin{aligned}
\hat{\mathbb{P}}\left\{z_{t} \mid z_{t-1}\right\} & =\frac{c_{z_{t-1}, z_{t}}+1}{c_{z_{t-1}}+m} \\
\hat{\mathbb{P}}\left\{z_{t}\right\} & =\frac{c_{z_{t}}+1}{\sum_{z=1}^{m} c_{z}+m}
\end{aligned}
$$

- Aside: Laplace smoothing can also be used in decision tree training to compute entropy.

Smoothing Example

Smoothing Example 2

Smoothing Example 3

Sampling from Discrete Distribution

Discussion

- To generate new sentences given an N gram model, random realizations need to be generated given the conditional probability distribution.
- Given the first $N-1$ words, $z_{1}, z_{2}, \ldots, z_{N-1}$, the distribution of next word is approximated by $p_{x}=\hat{\mathbb{P}}\left\{z_{N}=x \mid z_{N-1}, z_{N-2}, \ldots, z_{1}\right\}$. This process then can be repeated for on $z_{2}, z_{3}, \ldots, z_{N-1}, z_{N}$ and so on.

CDF Inversion Method Diagram

Discussion

Generating New Words 1
 Quiz

Generating New Words 2
 Quiz

