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Natural Language
Motivation

Generative model: next lecture Bayesian network.

This lecture: a review of probability, application in natural
language.

The goal is to estimate the probabilities of observing a
sentence and use it to generate new sentences.
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Tokenization
Motivation

When processing language, documents (called corpus) need to
be turned into a sequence of tokens.

1 Split the string by space and punctuations.

2 Remove stopwords such as ”the”, ”of”, ”a”, ”with” ...

3 Lower case all characters.

4 Stemming or lemmatization words: make ”looks”, ”looked”,
”looking” to ”look”.
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Vocabulary
Motivation

Word token is an occurrence of a word.

Word type is a unique token as a dictionary entry.

Vocabulary is the set of word types.

Characters can be used in place of words as tokens. In this
case, the types are ”a”, ”b”, ..., ”z”, ” ”, and vocabulary is
the alphabet.
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Zipf’s Law
Motivation

If the word count if f and the word rank is r , then

f � r � constant

This relation is called Zipf’s Law
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Bag of Words Features
Definition

Given a document i and vocabulary with size m, let cij be the
count of the word j in the document i for j � 1, 2, ...,m.

Bag of words representation of a document has features that
are the count of each word divided by the total number of
words in the document.

xij �
cij

m̧

j 1�1

cij 1
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TF IDF Features
Definition

Another feature representation is called tf-idf, which stands
for normalized term frequency, inverse document frequency.

tf ij �
cij

max
j 1

cij 1
, idf j � log

n
ņ

i�1

1tcij¡0u

xij � tf ij idf j

n is the total number of documents and
ņ

i�1

1tcij¡0u is the

number of documents containing word j .
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Cosine Similarity
Definition

The similarity of two documents i and i 1 is often measured by
the cosine of the angle between the feature vectors.

sim pxi , xi 1q �
xTi xi 1b

xTi xi

b
pxi 1q

T xi 1
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N-Gram Model
Description

Count all n gram occurrences.

Apply Laplace smoothing to the counts.

Compute the conditional transition probabilities.
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Token Notations
Definition

A word (or character) at position t of a sentence (or string) is
denoted as zt .

A sentence (or string) with length d is pz1, z2, ..., zdq.

P tZt � ztu is the probability of observing zt P t1, 2, ..., ju at
position t of the sentence, usually shortened to P tztu.
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Unigram Model
Definition

Unigram models assume independence.

P tz1, z2, ..., zdu �
d¹

t�1

P tztu

In general, two events A and B are independent if:

P tA|Bu � P tAu or P tA,Bu � P tAuP tBu

For a sequence of words, independence means:

P tzt |zt�1, zt�2, ..., z1u � P tztu
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Maximum Likelihood Estimation
Definition

P tztu can be estimated by the count of the word zt.

P̂ tztu �
czt
m̧

z�1

cz

This is called the maximum likelihood estimator because it
maximizes the probability of observing the sentences in the
training set.
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MLE Example
Definition

Let p � P̂ t0u in a string with c00’s and c11’s.

The probability of observing the string is:�
c0 � c1

c0



pc0 p1 � pqc1

The above expression is maximized by:

p� �
c0

c0 � c1
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Bigram Model
Definition

Bigram models assume Markov property.

P tz1, z2, ..., zdu � P tz1u
d¹

t�2

P tzt |zt�1u

Markov property means the distribution of an element in the
sequence only depends on the previous element.

P tzt |zt�1, zt�2, ..., z1u � P tzt |zt�1u
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Conditional Probability
Definition

In general, the conditional probability of an event A given
another event B is the probability of A and B occurring at the
same time divided by the probability of event B.

P tA|Bu �
P tABu
P tBu

For a sequence of words, the conditional probability of
observing zt given zt�1 is observed is the probability of
observing both divided by the probability of observing zt�1

first.

P tzt |zt�1u �
P tzt�1, ztu

P tzt�1u
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Bigram Model Estimation
Definition

Using the conditional probability formula, P tzt |zt�1u, called
transition probabilities, can be estimated by counting all
bigrams and unigrams.

P̂ tzt |zt�1u �
czt�1,zt

czt�1
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Transition Matrix
Definition

These probabilities can be stored in a matrix called transition
matrix of a Markov Chain. The number on row j column j 1 is
the estimated probability P̂ tj 1|ju. If there are 3 tokens
t1, 2, 3u, the transition matrix is the following.�

�P̂ t1|1u P̂ t2|1u P̂ t3|1u

P̂ t1|2u P̂ t2|2u P̂ t3|2u

P̂ t1|3u P̂ t2|3u P̂ t3|3u

�
�

Given the initial distribution of tokens, the distribution of the
next token can be found by multiplying it by the transition
probabilities.
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Aside: Stationary Probability
Discussion

Given the bigram model, the fraction of times a token occurs
for a document with infinite length can be computed. The
resulting distribution is called the stationary distribution.

p8 � p0M
8
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Aside: Spectral Decomposition
Discussion

It is easier to find powers of diagonal matrices.

Let D be the diagonal matrix with eigenvalues of M on the
diagonal and P be the matrix with columns being
corresponding eigenvectors.

MP � λiP, i � 1, 2, ...,K

MP � PD

M � PDP�1

Mn � PDP�1PDP�1...PDP�1loooooooooooooomoooooooooooooon
n times

� PDnP�1

M8 � PD8P�1
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Aside: Stationarity
Discussion

A simpler way to compute the stationary distribution is to
solve the equation:

p8 � p8M
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Trigram Model
Definition

The same formula can be applied to trigram: sequences of
three tokens.

P̂ tzt |zt�1, zt�2u �
czt�2,zt�1,zt

czt�2,zt�1

In a document, likely, these longer sequences of tokens never

appear. In those cases, the probabilities are
0

0
. Because of

this, Laplace smoothing adds 1 to all counts.

P̂ tzt |zt�1, zt�2u �
czt�2,zt�1,zt � 1

czt�2,zt�1 �m
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Laplace Smoothing
Definition

Laplace smoothing should be used for bigram and unigram
models too.

P̂ tzt |zt�1u �
czt�1,zt � 1

czt�1 �m

P̂ tztu �
czt � 1

m̧

z�1

cz �m

Aside: Laplace smoothing can also be used in decision tree
training to compute entropy.
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N Gram Model
Algorithm

Input: series tz1, z2, ..., zdi u
n
i�1.

Output: transition probabilities P̂ tzt |zt�1, zt�2, ..., zt�N�1u
for all zt � 1, 2, ...,m.

Compute the transition probabilities using counts and Laplace
smoothing.

P̂ tzt |zt�1, zt�2, ..., zt�N�1u �
czt�N�1,zt�N�2,...,zt � 1

czt�N�1,zt�N�2,...,zt�1 �m
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Sampling from Discrete Distribution
Discussion

To generate new sentences given an N gram model, random
realizations need to be generated given the conditional
probability distribution.

Given the first N � 1 words, z1, z2, ..., zN�1, the distribution of
next word is approximated by
px � P̂ tzN � x |zN�1, zN�2, ..., z1u. This process then can be
repeated for on z2, z3, ..., zN�1, zN and so on.
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Inverse Transform Sampling, Part I
Discussion

Most programming languages have a function to generate a
random number u � Unif r0, 1s.

If there are m � 2 tokens in total and the conditional
probabilities are p and 1 � p. Then the following distributions
are the same.

zN �

#
0 with probability p

1 with probability 1 � p
ô zN �

#
0 if 0 ¤ u ¤ p

1 if p   u ¤ 1
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Inverse Transform Sampling, Part II
Discussion

In the general case with m tokens with conditional

probabilities p1, p2, ..., pm with
m̧

j�1

pj � 1. Then the following

distributions are the same.

zN � j with probability pj ô zN � j if
j�1̧

j 1�1

pj 1   u ¤
j̧

j 1�1

pj 1

This can be used to generate a random token from the
conditional distribution.
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Sparse Matrix
Discussion

The transition matrix is too large with mostly zeros.

Usually, clustering is done so each type (or feature) represent
a group of words.

For the homework, treat each character (letter or space) as a
token, then there are 26 � 1 types. All punctuations are
removed or converted to spaces.
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