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Thesis Statement

There are vulnerabilities in multi-agent systems and attackers
can influence the behavior of players of normal-form games or
multi-agent reinforcement learners through data or
environment poisoning.
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Overview

An attacker minimally modifies the rewards of a normal-form
game or a Markov game with the goal of installing a target
policy as the unique equilibrium the victims will learn.

1 Planning setting: the victims are directly given the reward
matrices.

2 Offline setting: the victims are given a dataset containing
realizations of the rewards.

3 Online setting: the victims are given realizations of the
rewards during online learning.
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List of Projects

Reward poisoning problems:

1 Mixed-iNash: Planning, zero-sum, stochastic policy target.

2 iNash: Offline, zero-sum, deterministic policy target.

3 iDSE: Offline, general-sum, deterministic policy target.

4 Online-iDSE: Online, general-sum deterministic policy
target.
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Mixed Nash Attack

1 Joint work p� 75% contribution) with Jeremy McMahan,
Yiding Chen, Yudong Chen, Jerry Zhu, Qiaomin Xie.

Victim setting:

1 The victims are given a normal-form or Markov game, and
solves for the (Markov perfect) Nash equilibrium policy,
possibly a stochastic (behavioral) policy.
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Attacker Setting

Attacker Setting:

1 The attacker wants the victims to learn a target (possibly
stochastic) policy π: as the unique (Markov perfect) Nash
equilibrium.

2 The attacker can modify the rewards from Ro to R:.

3 The attacker minimizes the reward modification cost
C
�
R:,Ro

�
, convex in R:.
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iNash Formulation

The attack can be formulated as

min
R:

C
�
R:,Ro

�
s.t.R: P iNash

�
π:
�
,

where iNash pπq is the inverse Nash set of reward matrices such
that π is the unique Nash equilibrium. (The Q functions can be
used in place of R for Markov games.)
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Characterizing Nash Uniqueness

For a normal-form game pR,Aq and a strategy profile
π � pp, qq with support pI,J q, define conditions:

Condition

SIISOW (Switch-In Indifferent, Switch-Out Worse):

eTI Rq � pTRq � pTReJ ,

eTAzIRq   pTRq   pTReAzJ .

Condition

INV (Invertibility):

�
RIJ �1|I|
1T|J | 0

�
is invertible.
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iNash Set

Theorem

SIISOW and INV are sufficient and necessary conditions for a
zero-sum game pR,Aq to have a unique Nash π � pp, qq with
support pI,J q.

Proof sketch: a zero-sum game can be solved as a linear
program, and the uniqueness of its optimal solution can be
characterized by strict complementarity (SIISOW) and basic
feasibility (INV).
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Attacker’s Problem

The attacker’s problem can be converted to:

min
R:

C
�
R:,Ro

�
s.t.R: satisfies SIISOW

R: satisfies INV

Other constraints can be added, for example:

1 Reward entry bounds: R: P r�b, bs,
2 Target range of Nash values: pTR:q P rv , v s.
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Feasibility

Lemma

A feasible attack R: exists if and only if π: has equal support sizes,
that is |I| � |J | and rv , v s X p�Hb,Hbq is non-empty.

Proof sketch: INV implies equal support sizes, and a
translation and scaling of a class of extended
rock-paper-scissors games R eRPS guarantees the existence of
a feasible attack as long as the target value is in the interior
of r�b, bs.
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Extened Rock Paper Scissors

A typical R eRPS for π: � pp, qq looks like:

1 1

1 1

1 1

1 1

1 1

1 1

�1 �1 �1 �1 �1 �1

�1 �1 �1 �1 �1 �1

�c

piqi�1

c

piqi�2
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Special Examples

Special examples of eRPS games include

1 If p � q �
�
1

3
,
1

3
,
1

3



, then R eRPS �

�
� 0 �1 1

1 0 �1
�1 1 0

�
� has

the unique Nash π: � pp, qq.

2 If p � q � p1, 0, 0q, then R eRPS �
�
� 0 1 1
�1 0 0
�1 0 0

�
� has the

unique Nash π: � pp, qq.
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Non Linear Constraints

SIISOW and other value constraints are linear and INV
constraints are non-linear:

min
R:

C
�
R:,Ro

�
s.t.R: satisfies SIISOW

R: satisfies INV

R: P r�b, bs and pTR:q P rv , v s .
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Relax and Perturb

Relax And Perturb (RAP) algorithm:

1 Solve the relaxed problem:

min
R 1

C
�
R 1,Ro

�
s.t.R 1 satisfies SIISOW

R 1 P p�b, bq and pTR 1q P rv , v s .
2 Perturb the solution:

R: � R 1 � εR eRPS , with ε � Unif .
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Feasibility of RAP

Proposition

RAP produces a solution R: � R 1 � εR eRPS feasible to the
original problem with probability 1.

Intuition: if matrix A is not invertible and has eigenvalues λ some
of which are 0, then A + εI has eigenvalues λ� ε, and if
ε � Unif , the eigenvalues are all non-zero with probability 1.
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Optimality of RAP

Proposition

RAP produces a near-optimal solution R: � R 1 � εR eRPS for
sufficiently small relaxation and perturbation parameters and
assuming the cost function is Lipschitz.

Intuition: the perturbation preserves SIISOW and other value
constraints, so R: is feasible for the original problem, and for small
relaxation and perturbation parameters, R: is close to R 1, implying
a near-optimal cost due to the Lipschitz assumption.
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Pure Nash Attack

2 Joint work p� 75% contribution) with Jeremy McMahan,
Jerry Zhu, Qiaomin Xie. (Thanks: Yudong Chen)

The victims are uncertainty-aware offline learner of a zero-sum
normal-form or Markov game, and estimates a set of plausible
games.

The attacker has to ensure that all games in the set of
plausible games have the target policy as unique (Markov
perfect) Nash equilibrium.
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The Attack Problem

The attack can be formulated as

min
r:

C
�
r :, ro

�
s.t.R̂

�
r :; ρ

� � iNash
�
π:
�
,

where R̂ represents the set of plausible games given the data r :

with some confidence parameter ρ.
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Reduction from 1

When π: � pi , jq is deterministic, INV is always satisfied, and
SIISOW can be reduced to strict Nash condition:

Rij 1   Rij   Ri 1j ,@ i 1 � i , j 1 � j .

The attacker’s problem can be written as:

min
r:

C
�
r :, ro

�
s.t. UCB

�
R̂ij 1

�
r :
�	   LCB

�
R̂ij

�
r :
�	

  UCB
�
R̂ij

�
r :
�	   LCB

�
R̂i 1j

�
r :
�	

.
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iNash Diagram

Space of Data Sets

ror :

!
r : R̂ prq � iNash

�
π:
�)

Space of Rewards

R̂ proqR̂
�
r :
�

iNash
�
π:
�
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Feasibility and Optimization

The attack problem is feasible if the set of plausible games are
sufficiently small, and the problem can be converted into a
convex program with linear constraints.
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Comparison between 1 and 2

In general, it is impossible to install a stochastic policy π: in
the offline data poisoning setting, since iNash

�
π:
�
for

stochastic π: is a measure-zero set, but the set of plausible
games is usually not.
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Dominant Strategy Offline Attack

3 Joint work p� 50% contribution) with Jeremy McMahan,
Jerry Zhu, Qiaomin Xie. (Thanks: Yudong Chen)

The settings are similar to the Nash Attack 2 , except there
are n victims learning general-sum normal-form or Markov
games.
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Feasibility and Optimization

iDSE with (Markov perfect) dominant strategy equilibrium is
used in place of iNash: the feasibility conditions are similar,
and the attack can also be converted into a convex program
with linear constraints.
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Modification from 2

A strict DSE is defined by:

Ri 1j 1   Rij 1 ,@ j 1 and i 1 � i ,

Ri 1j   Ri 1j 1 ,@ i 1 and j 1 � j .

The attacker’s problem can be written as:

min
r:

C
�
r :, ro

�
s.t. UCB

�
Ri 1j 1

�
r :
��   LCB

�
Ri 1j

�
r :
��

,

UCB
�
Rij 1

�
r :
��   LCB

�
Ri 1j 1

�
r :
��

.
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Comparison between 2 and 3

Characterization of general-sum games with a unique Nash
equilibrium is difficult, but general-sum games with a unique
dominant strategy equilibrium can be characterized by a set of
linear constraints, which can be used in the attacker’s
problem.
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Dominant Strategy Online Attack

4 Joint work p� 15% contribution) with Yuzhe Ma (main
author), and Jerry Zhu.

The victims are learning the equilibrium policy of a
general-sum bandit game using online no-regret algorithms.

iDSE is also used, the problem is always feasible, and the
attack costs can be sub-linear.
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Modification from 3

The online victims get bandit feedback, so the attacker only
incurs cost when the an action is used.

Since the online victims use no-regret learning algorithms, the
target action profile will be use in all but sub-linear number of
rounds.

Cost minimization in this setting can be further simplified to
not changing or minimally changing the rewards from the
target action profile.
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Comparison between 3 and 4

In 1 , 2 , 3 , game value at the boundary of r�b, bs is not
feasible.

In 4 , game value at the boundary t�b, bu is possible due to
repeated interactions between the attacker and the victims:
the first few iterations can be used to mislead the no-regret
victims to choose the target action profile.
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Summary

The attacker installs π: as the unique ...:

Pure π: Zero-sum General-sum

Planning NE 1 DSE 3

Offline NE 2 DSE 3

Online NE DSE 4

Mixed π: Zero-sum General-sum

Planning NE 1 ?

Offline impossible 2 impossible

Online ? ?
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Thank you!
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Game Redesign

Victim setting:

1 The victims are no-regret online learners with O pTαq regret,
e.g. EXP3.P.

2 The victims participate in an n-player general-sum bandit
game with original reward ro paq P r�1, 1sn for action profile
a � pa1, a2, ..., anq.
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Attacker Setting

Attacker setting:

1 The attacker wants the victims to take a target

(deterministic) policy π: �
�
π:1, π

:
2, ..., π

:
n

	
as often as

possible, i.e. maximize
Ţ

t�1

1pat�π:q.

2 The attacker can modify the rewards that the victims see
from ro paq to r : paq.

3 The attacker wants sublinear design cost
Ţ

t�1

���ro patq � r :t patq
���
p
.
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Interior Design Example

Suppose π: � p1, 1q, the attacker can redesign the game ro to
r :,

ro �

�
����

p0, 0q
�
�1, 1

	 �
1 ,�1

	
�
1 ,�1

	
p0, 0q

�
�1, 1

	
�
�1, 1

	 �
1 ,�1

	
p0, 0q

�
���� ,

r :1 � r :2 � ... �

�
����

�
0 , 0

	 �
0.1 ,�0.1

	 �
0.1 ,�0.1

	
�
�0.1, 0.1

	
p0, 0q p0, 0q�

�0.1, 0.1
	

p0, 0q p0, 0q

�
���� .
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Interior Design Algorithm

Given ro paq P r�1, 1s, first consider the interior case when
ro
�
π:
� ¡ �1.

Assumption: ro
�
π:
� ¥ �1� ρ, for some ρ ¡ 0.

Attack: r :i ,t paq �

$'&
'%
roi
�
π:
�� �1� d patq

n



ρ if ai ,t � π:i

roi
�
π:
�� d patq

n
ρ if ai ,t � π:i

,

where d patq �
ņ

i�1

1!
ai,t�π:

i

).
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Interior Design Result

Theorem

Using the interior design, π: is used T � O pnTαq times while
incurring design cost O

�
n1�1{pTα

�
.

For example, EXP3.P with L1 cost can achieve π: being used

T � O
�
n
?
T
	
times with cost O

�
n2
?
T
	
.
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Interior Design Proof Sketch

Under this attack, we have,

r :i ,t paq �

$'&
'%
roi
�
π:
�� �1� d patq

n



ρ if ai ,t � π:i

roi
�
π:
�� d patq

n
ρ if ai ,t � π:i

.

1 π: is strictly dominant:

r :i ,t

�
π:i ,t , a�i ,t

	
� r :i ,t pai ,t , a�i ,tq �

�
1� 1

n



ρ,@ ai ,t � π:i ,t .

2 π: rewards remain unchanged: r :i ,t
�
π:
� � roi

�
π:
�
.

No-regret learners will use the optimal action profile π: in all
but O pTαq rounds while incurring O pTαq design cost.
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Boundary Design Example

When ro
�
π:
� � �1, it is impossible to decrease other entries

below �1: another design is needed.

Suppose again π: � p1, 1q, then,

ro �

�
����
p�1,�1q

�
�1, 1

	 �
1 ,�1

	
�
1 ,�1

	
p�1,�1q

�
�1, 1

	
�
�1, 1

	 �
1 ,�1

	
p�1,�1q

�
���� ,

r :1 �

�
����
�
�0.8 , �0.8

	 �
�0.7 ,�0.9

	 �
�0.7 ,�0.9

	
�
�0.9, �0.7

	
p�1,�1q p�1,�1q�

�0.9, �0.7
	

p�1,�1q p�1,�1q

�
���� ,
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Boundary Design Example Limit

r :1 �

�
����
�
�0.8 , �0.8

	 �
�0.7 ,�0.9

	 �
�0.7 ,�0.9

	
�
�0.9, �0.7

	
p�1,�1q p�1,�1q�

�0.9, �0.7
	

p�1,�1q p�1,�1q

�
���� ,

r :2 �

�
����
�
�0.9 , �0.9

	 �
�0.85 ,�0.95

	 �
�0.85 ,�0.95

	
�
�0.95, �0.85

	
p�1,�1q p�1,�1q�

�0.95, �0.85
	

p�1,�1q p�1,�1q

�
���� ,

lim
tÑ8

r :t �
�
�p�1,�1q p�1,�1q p�1,�1q
p�1,�1q p�1,�1q p�1,�1q
p�1,�1q p�1,�1q p�1,�1q

�
� .
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Boundary Design Algorithm

Assumption: ro
�
π:
� � �1.

Attack: r :i ,t paq � wtr
:
i , interior paq � p1� wtq ro

�
π:
�
, where

wt � tα�ε�1, for some ε P p0, 1� αs.



42/58

Introduction Mixed-iNash iNash iDSE Online-iDSE Summary Back-Up

Boundary Design Result

Theorem

Using the boundary deisng with ε � 1� α

2
, π: is used

T � O
�
nT p1�αq{2

�
times while incurring design cost

O
�
n1{p p1� nqT p1�αq{2

�
.
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Boundary Design Proof Sketch

Under this attack, we have,

r :i ,t paq � wtr
:
i , interior paq � p1� wtq ro

�
π:
�
, where wt � tα�ε�1.

1 π: is strictly dominant:

r :i ,t

�
π:i ,t , a�i ,t

	
� r :i ,t pai ,t , a�i ,tq �

�
1� 1

n



ρwt ,@ ai ,t � π:i ,t .

2 π: rewards are almost unchanged:���r :i ,t �π:�� roi
�
π:
����

p
¤ 2bn1{pwt .

No-regret learners will use the optimal action profile π: in all
but O

�
T p1�αq{2

�
rounds while incurring O

�
T p1�αq{2

�
design

cost.
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Nash Attack

Victim setting:

1 The victims are uncertainty-aware offline learners that use
additive bonus terms β when estimating the Q function,
i.e.Q � R̂ � β � EP̂ rV 1s.

2 The victims learn a two-player zero-sum Markov game from a

training set

"��
s
pkq
t , a

pkq
t , r

pkq
t

	T
t�1


*K

k�1

, with r
pkq
t P r0, 1s.
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Attacker Setting

Attacker setting:

1 The attacker wants the victims to learn a target
(deterministic) policy π: as the unique Markov perfect (Nash)
equilibrium.

2 The attacker can modify the rewards in the training set from
ro to r :.

3 The attacker minimizes the reward modification cost��r : � ro
�� , e.g. Ķ

k�1

Ţ

t�1

���r :,pkqt � r
o,pkq
t

���
1
.

4 The attacker does not know R̂ and P̂, but assumes���R̂ � RpMLEq
���   ρpRq and

���P̂ � PpMLEq
���
1
  ρpPq.
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iNash Formulation

The attack can be formulated as

min
r:

��r : � ro
��

s.t.Q̂π:
�
r :; ρpRq, ρpPq

	
� iNash

�
π:
�
,

where,

1 Q̂π prq is the set of plausible Q functions computed based on
r evaluated on π,

2 iNash pπq is the inverse Nash polytope of Q functions such
that π is the strict Markov perfect (Nash) equilibrium.
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iNash Diagram

Space of Data Sets

ror :

!
r : Q̂π: prq � iNash

�
π:
�)

Space of Q Functions

Q̂π: proqQ̂π: �
r :
�

iNash
�
π:
�
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Feasibility

Theorem

The attack is feasible if ρ
pRq
t ps, aq � |βt ps, aq|   1

4T
,@ t, s, and

actions a such that a1 � π:1,t psq or a2 � π:2,t psq.

For example, if ρpRq � 0 and β � ca
Nt ps, aq

, then the

condition is a data coverage condition, Nt ps, aq ¡ 16cT 2 for
actions profiles in the same row or column as π: in the stage
game matrices.
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Feasible Example

Suppose π: � p1, 1q in a stage game, then the following
attack is feasible under the previous feasibility condition,

a1za2 1 2 3 4

1 0.5 1 1 1

2 0 - - -

3 0 - - -

4 0 - - -

Unspecified cells’ corresponding rewards do not need to be
poisoned.
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Feasibility Proof Sketch

The condition ρ
pRq
t ps, aq � |βt ps, aq|   1{ p4T q implies that

the cumulated confidence interval width for R and P in the
future periods is bounded by 1{4.
In period t, state s, for every a1 � π:1 and a2 � π:2 , the Q
values have the following relationship.

0 1{4 1{2 3{4 1

Q:
�
a1, π

:
2

	
Q:
�
π:
�

Q:
�
π:1, a2

	

Therefore, π:t psq is the strict, thus unique, Nash equilibrium
in every stage game pt, sq.
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Linear Program Formulation

The attacker’s problem is given by,

min
r:

Ķ

k�1

Ţ

t�1

���r :,pkqt � r
o,pkq
t

���
1

s.t. for every t, s, and Q:
t P Q̂π: �

r :
�
,

Q:
t

�
s, π:t psq

	
¡ Q:

t

�
s,
�
a1, π

:
t,2 psq

		
,@ a1 � π:t,1 psq ,

Q:
t

�
s, π:t psq

	
  Q:

t

�
s,
�
π:t,1 psq , a2

		
,@ a2 � π:t,2 psq .

Since Q̂π prq are polytopes, this problem can be formulated as
a linear program and solved efficiently.
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Multi Attacker

Incomplete, joint work p� 75% contribution) with Elliot
Pickens, Jin-Yi Cai, and Jerry Zhu.

Victim setting:

1 Single or multiple identical victims that estimates the mean µ̂
of a data set, based on a training provided by the attackers.
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Attacker Setting, Direction, Continuous

Attacker Setting 1.1:

1 Each of K attackers has a target direction x:k with the goal of

minimizing
�
x:k

	T
µ̂.

2 Each attacker creates a training set with Xk from a convex
and compact domain X , and the (disjoint) union of tXkuKk�1

is given to the victim.

The game has a (weakly) dominant strategy equilibrium, in
which the attackers choose the most extreme points in X in
the x: directions.
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Attacker Setting, Direction, Discrete

Attacker Setting 1.2:

1 Each of K attackers has a target direction x:k with the goal of

minimizing
�
x:k

	T
µ̂.

2 Each attacker creates a training set with Xk from n existing
points X , and the (disjoint) union of tXkuKk�1 is given to the
victim.

The game has a (weakly) dominant strategy equilibrium, in
which the attackers choose the most extreme points in X in
the x: directions.
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Attacker Setting, Point, Continuous

Attacker Setting 2.1:

1 Each of K attackers has a target point x:k with the goal of

minimizing
���x:k � µ̂

���2.
2 Each attacker creates a training set with Xk from a convex

and compact domain X , and the (disjoint) union of tXkuKk�1

is given to the victim.

The game has at least one pure strategy Nash equilibrium,
and it can be found using

1 Best response dynamics,

2 Maximizing a (weakly) concave potential function on convex
and compact X .
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Attacker Setting, Point, Discrete

Attacker Setting 2.2:

1 Each of K attackers has a target point x:k with the goal of

minimizing
���x:k � µ̂

���2.
2 Each attacker creates a training set with Xk from n existing

points X , and the (disjoint) union of tXkuKk�1 is given to the
victim.

The game has at least one pure strategy Nash equilibrium,
and it can be found using

1 Best response dynamics,

2 Maximizing a potential function on finite X .
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Potential Function Formulation

The payoff to attacker k can be written as

�
�����x:k �

�
x0 �

Ķ

k�1

xk

������
2

,

where xk is the centroid of the points provided by attacker k.

The potential function is

�
Ķ

k�1

}wkxk}2

� 2
¸
i�j

�
x:i �

�
x0 �

¸
k�i

wkxk

����x:j �
�
�x0 �

¸
k�j

wkxk

�

�
.
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