Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Second Year Paper Mechanism Design with Stopping Problem

Young Wu supervised by Marcin Peski

December 16, 2014

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

General Problem

- Agent observes Markov stochastic process X_t
- Agent chooses (1) when to stop τ ; (2) action $q_t(x)$
- Principal pays $p_t(q_t)$
- What behavior is implementable?

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Investment Example

- Agent collects information about the value of a project X_t until time τ
- Agent then decides how much to invest q_{τ} (money or effort)
- Principal has possibly different preference on the amount of information to collect, and the amount of investment.
- Principal wants to implement particular stopping rules by paying the agent p_t(q_t)

Advice Example

- Unknown state θ in $\{-1, 1\}$; payoff linear in state.
- Agent has private information: X_t is the belief of the state
- Agent recommends action cancel project (q_t = −1) or start production (q_t = 1), or continue research (wait until next period to update X_t).
- Principal wants to set a price for each advice at each time p_t(-1) and p_t(1) to incentivize the agent to provide advice that aligns with the preference of the principal (i.e. maybe biased).

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Agent's Problem

- Observe Markov Process $\{X_t\}_{t=0}^T, X_t \in X = [\underline{x}, \overline{x}]$
- Choose stopping rule + terminal action $(\tau, \{q_t\}_{t=0}^T)$
- where $\tau : X^T \to \{0, 1, 2, ..., T\}$ is a (predictable) stopping rule
- and $q: X \rightarrow Q, Q$ is the set of terminal actions (could be continuous or discrete)
- Maximize $U_0(\tau, x) = \mathbb{E}\left[u_{\tau}(q_{\tau}, X_{\tau}) p_{\tau}(q_{\tau}) | X_0 = x\right]$

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Principal's Problem

- Observe time of decision au and decision $q_{ au}$
- Choose a mechanism, a set of prices, $\{p_t(q_t)\}_{t=0}^T$ to incentivize the agent to use a particular $(\tau, \{q_t\}_{t=0}^T)$
- Here, (τ, q_t) is implementable means given the prices, the agent's optimal stopping rule + terminal decision is (τ, q_t)

Model oo●oooo Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Utility Functions

Stopping value (utility if stopped at *t*):

$$U_t(x) = \max_{q_t \in Q} u_t(q_t, x) - p_t(q_t)$$

Continuation value:

$$\mathbb{E}\left[V_{t+1}(X_{t+1})|X_t=x\right] = \sup_{\tau:t+1 \le \tau \le T} \mathbb{E}\left[U_{\tau}(X_{\tau})|X_t=x\right]$$

• Value function: $V_t(x) = \max\{U_t(x), \mathbb{E}[V_{t+1}(X_{t+1})|X_t = x]\}$

Model 000●000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Interesting Stopping Rules

 Single Cutoff Stopping Rule: *τ* = min_{t≤T} {*x*_t ∈ [*b*_t, *x*̄]}; fix *b*_T = <u>x</u>

 Binary Cutoff Stopping Rule:

$$\tau = \min_{t \leq T} \{ x_t \notin [a_t, b_t] \}; \text{ fix } a_T = b_T$$

Model 0000●00 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Single Cutoff Stopping Rule - Diagram

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Model ooooo●o Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Binary Cutoff Stopping Rule - Diagram

Binary Cutoff Rule

Conclusion 00000

Assumptions on Stochastic Process

- Markov
- Monotonic transition (equivalent to X_{t+1} FOSD X_t)
- Continuous transition
- Full support
- Examples: additive and multiplicative random walks (proof in Kruse and Strack (2014))
- In some examples: martingale

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Kruse and Strack (2014) - Results

- Assumption: $q_t \in Q = \{1\}$
- Main result:

$$z_t(x) = \mathbb{E}\left[u_{t+1}(q_{t+1} = 1, X_{t+1}) | X_t = x\right] - u_t(q_t = 1, x)$$

- If $z_t(x)$ is non-increasing (Single Crossing Condition):
- Then a stopping rule is implementable if and only if it is a (single) cutoff rule
- Found closed form expressions for prices

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Conclusion 00000

Single Cutoff Rule - Assumptions on Utility Function

Assumption: q_t ∈ Q is an interval [0, Q̄] in ℝ⁺
Assumption:
$$\frac{\partial^2 u_t(q, x)}{\partial q \partial x} \ge 0$$

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Single Cutoff Rule - Conditions

- Sufficient and Necessary conditions for implementability of all single cutoff rules:
- Spence-Mirrlees Condition (SM) : $\frac{dq_t(x)}{dx} \ge 0$
- Pavan-Segal-Toikka's Single Crossing Condition (SC PST):

$$\frac{\partial u_t(q_t, x)}{\partial x} \geq \mathbb{E}\left[\frac{\partial u_{t+1}(q_{t+1}, X_{t+1})}{\partial x}\mathcal{I}(X_{t+1}, X_t)|X_t = x\right]$$

Impulse response function: $\mathcal{I}(x_{t+1}, x_t) = -\frac{\partial F_{t+1}(x_{t+1}|x_t)}{\partial x_t} \frac{1}{f_{t+1}(x_{t+1}|x_t)}$

■ From PST: I(x_{t+1}, x + t) captures "marginal effects of the current type on future ones"

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Single Cutoff Rule - Main Result

Theorem

Under assumptions on the stochastic process and the utility function stated in the previous slides: $\{q_t\}_{t=0}^T$ satisfies conditions SM and SC _{PST} if and only if $(\tau, \{q_t\}_{t=0}^T)$ is implementable for all single cutoff rules τ .

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Investment Example (from Slide 2)

- Agent collects information about the value of a project X_t until time τ
- Agent then decides how much to invest q_{τ} (money or effort)

• Assumption:
$$u_t(q, x) = \beta^t q x - \sum_{s=0}^t c_s$$

• Assumption: $X_{t+1} = X_t + \varepsilon_t, \varepsilon_t \sim G_t$ independent

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Investment Example

• Assumption:
$$u_t(q, x) = \beta^t q x - \sum_{s=0}^t c_s$$

• Assumption: $X_{t+1} = X_t + \varepsilon_t, \varepsilon_t \sim G_t$ independent

• Then SM:
$$q'_t(x) \ge 0$$

- And SC: $q_t(x) \ge \beta \mathbb{E} \left[q_{t+1}(X_{t+1}) | X_t = x \right]$
- A modified version of the closed form formula for prices in KS still applies

Model 0000000

Investment Example - Violate SC

- For simplicity, let $T = 2, \beta = 1$ and G_1 has mean 0 and variance σ_G^2
- Consider implementing $q_0(x) = x$ and $q_1(x) = 2x$
- This does not satisfy SC

• Then
$$U_0(x) = \frac{x^2}{2} - p_0(b_0)$$

• and $\mathbb{E}[V_1(X_1)|X_0 = x] = x^2 + \sigma_G^2$

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Investment Example - Violate SC Diagram

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusion 00000

Investment Example - Not Violate SC

• Consider implementing
$$q_0(x) = x$$
 and $q_1(x) = \frac{x}{2}$

• Then
$$U_0(x) = \frac{x^2}{2} - p_0(b_0)$$

• and
$$\mathbb{E}[V_1(X_1)|X_0=x] = \frac{x^2 + \sigma_G^2}{4}$$

Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Conclusion 00000

Investment Example - Not Violate SC Diagram

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Sufficiency

 τ implementable

 Z_t increasing

$U_t - V_t$ increasing

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Sufficiency

Model 0000000 Conclusion 00000

Proof - SC $_{PST}$ to Monotonic Z_t

• Marginal Incentives: $Z_t(x) = \mathbb{E}[U_{t+1}(X_{t+1})|X_t = x] - U_t(x)$

After some integration by parts:

$$\frac{dZ_t(x)}{dx} = \mathbb{E}\left[\frac{\partial u_{t+1}(q_{t+1}(X_{t+1}), X_{t+1})}{\partial x}\mathcal{I}(x)\right] - \frac{\partial u_t(q_t(x), x)}{\partial x}$$

Which is the SC *PST* condition:

$$\frac{\partial u_t(q_t, x)}{\partial x} \geq \mathbb{E}\left[\frac{\partial u_{t+1}(q_{t+1}, X_{t+1})}{\partial x}\mathcal{I}(X_{t+1}, X_t)|X_t = x\right]$$

▲□ > ▲圖 > ▲ 臣 > ▲ 臣 > → 臣 = ∽ 의 < ⊙ < ⊙

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Sufficiency

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

- q_t implementable
- τ implementable

 Z_t increasing

$U_t - V_t$ increasing

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Proof - Implementable to Monotonic $V_t - U_t$

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Binary Cutoff Rule - Convexity Conditions (Not Feasible)

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Binary Cutoff Rule from Two Types of Allocations

 $\begin{array}{c} \mathbb{E}[V_{t+1}(x)] & ----\\ U_t(x) & ---- \end{array}$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Binary Cutoff Rule - Assumptions and Notations

- Two types of allocations $q_t = -q_t^- \ge 0$ or $q_t = q_t^+ \ge 0$
- Assumption: $q_t \in Q$ is an interval $\left[\underline{Q}, \bar{Q}\right]$ in $\mathbb{R}, \underline{Q} < 0$ and $\bar{Q} > 0$

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Binary Cutoff Rule - Conditions

- Sufficient and Necessary conditions for implementability of all binary cutoff rules:
- Spence-Mirrlees Condition (SM): $\frac{dq_t^-(x)}{dx} \le 0, \frac{dq_t^+(x)}{dx} \ge 0$

Pavan-Segal-Toikka's Single Crossing Condition (SC PST):

$$egin{aligned} &rac{\partial u_t(-q_t^-,x)}{\partial x} \leq \mathbb{E}\left[rac{\partial u_{t+1}(-q_{t+1}^-,X_{t+1})}{\partial x}\mathcal{I}(X_{t+1},X_t)|X_t=x
ight] \ &rac{\partial u_t(q_t^+,x)}{\partial x} \geq \mathbb{E}\left[rac{\partial u_{t+1}(q_{t+1}^+,X_{t+1})}{\partial x}\mathcal{I}(X_{t+1},X_t)|X_t=x
ight] \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Binary Cutoff Rule - Main Result

Theorem

Under assumptions on the stochastic process and the utility function stated in the previous slides: $\{q_t\}_{t=0}^{T}$ satisfies conditions SM and SC _{PST} if and only if $(\tau, \{q_t\}_{t=0}^{T})$ is implementable for all binary cutoff rules τ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Single Cutoff Rule

Binary Cutoff Rule

イロト イポト イヨト イヨト

Conclusion 00000

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Sufficiency

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Proof - Plus Minus Notations

- For example, when there are only two actions {-1, 1}:
- Us: U^- means $u_t(q=-1,x)-p_t(-1)$
- and U^+ means $u_t(q=1,x) p_t(1)$
- Zs: Z^- means $\mathbb{E}[U_{t+1}(-1, X_{t+1})|X_t = x] U_t(-1, x)$
- and Z^+ means $\mathbb{E}\left[U_{t+1}(1, X_{t+1})|X_t = x\right] U_t(1, x)$
- Monotonicity of these Zs implies CS _{PST} and they are strong than the monotonicity of the following Marginal Incentives:

$$\begin{split} & \mathbb{E}\left[\max\{U_{t+1}(-1,X_{t+1}),U_{t+1}(1,X_{t+1})\}|X_t=x\right] - U_t(-1,x) \\ & \mathbb{E}\left[\max\{U_{t+1}(-1,X_{t+1}),U_{t+1}(1,X_{t+1})\}|X_t=x\right] - U_t(1,x) \end{split}$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Proof - Plus Minus Zs Diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Sufficiency

୬ବ୍ଦ

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000

Main Result - Proof Necessity

Model 0000000

Advice Example (from Slide 3)

- Unknown state θ in $\{-1, 1\}$; payoff linear in state.
- Agent has private information: X_t is the belief of the state
- Agent recommends action cancel project (q_t = −1) or start production (q_t = 1), or continue research (wait until next period to update X_t).
- Assumption: X_t form a martingale
- Assumption: $u_t(-1, x) = \alpha x c_t$ and $u_t(1, x) = \beta x c_t$ with $\alpha < 0$ and $\beta > 0$

Model 0000000

Advice Example - Linear Utility + Martingale

- Assumption: $q_t \in Q = \{-1, (\text{ cancel project }); 1, (\text{ start production })\}$
- Assumption: X_t form a martingale
- Assumption: $u_t(-1, x) = \alpha x c_t$ and $u_t(1, x) = \beta x c_t$ with $\alpha < 0$ and $\beta > 0$
- Then $(\tau, \{q_t\}_{t=0}^T)$ is implementable for all binary cutoff rule τ
- A modified version of the closed form formula for prices in KS still applies

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion 00000

Advice – Proof

- Value function V_t has derivatives bounded by α and β
- Martingale + Monotonic Transition preserves this property when taking conditional expectations

Model 0000000

Single Cutoff Rule

Binary Cutoff Rule

Conclusion •0000

Comparison with Kruse and Strack (2014)

- Extension of KS to multiple terminal actions
- In KS, SC is an assumption (sufficient) for implementing single cutoff rules
- Here, SC is a sufficient and necessary condition for implementing all single cutoff rules

Comparison with Pavan Segal and Toikka (2014)

- Special case of PST where an agent could only choose q_t once
- Simpler expression for SC
- In PST, SC is sufficient (stronger than the necessary condition integral monotonicity) for implementing (q_t, τ)
- Here, SC is sufficient and necessary for implementing (q_t, τ) for all τ
- In PST, no closed form solution for prices
- Here, closed form solution modified from KS still applies

Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

In addition to KS and PST

- Conditions for implementability of binary cutoff rules is not a direct extension from KS
- Model with two types of q that results in binary cutoff rules is not special case of PST
- Interpretable SC conditions for examples like investment and advice example.

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

Thanks

- Thank you for attending this presentation
- Thank Dr. Damiano for comments on the paper
- Thank Dr. Peski for all the help on the paper and the presentation

Model 0000000 Single Cutoff Rule

Binary Cutoff Rule

Conclusion 00000