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General Problem

Agent observes Markov stochastic process Xt

Agent chooses (1) when to stop τ ; (2) action qt(x)

Principal pays pt(qt)

What behavior is implementable?
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Investment Example

Agent collects information about the value of a project Xt

until time τ

Agent then decides how much to invest qτ (money or effort)

Principal has possibly different preference on the amount of
information to collect, and the amount of investment.

Principal wants to implement particular stopping rules by
paying the agent pt(qt)
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Advice Example

Unknown state θ in {-1, 1}; payoff linear in state.

Agent has private information: Xt is the belief of the state

Agent recommends action cancel project (qt = −1) or start
production (qt = 1), or continue research (wait until next
period to update Xt).

Principal wants to set a price for each advice at each time
pt(−1) and pt(1) to incentivize the agent to provide advice
that aligns with the preference of the principal (i.e. maybe
biased).
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Agent’s Problem

Observe Markov Process {Xt}Tt=0,Xt ∈ X = [x , x̄ ]

Choose stopping rule + terminal action (τ, {qt}Tt=0)

where τ : XT → {0, 1, 2, ...,T} is a (predictable) stopping rule

and q : X → Q,Q is the set of terminal actions (could be
continuous or discrete)

Maximize U0(τ, x) = E [uτ (qτ ,Xτ )− pτ (qτ )|X0 = x ]
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Principal’s Problem

Observe time of decision τ and decision qτ

Choose a mechanism, a set of prices, {pt(qt)}Tt=0 to
incentivize the agent to use a particular (τ, {qt}Tt=0)

Here, (τ, qt) is implementable means given the prices, the
agent’s optimal stopping rule + terminal decision is (τ, qt)



Introduction Model Single Cutoff Rule Binary Cutoff Rule Conclusion

Utility Functions

Stopping value (utility if stopped at t):

Ut(x) = max
qt∈Q

ut(qt , x)− pt(qt)

Continuation value:

E [Vt+1(Xt+1)|Xt = x ] = sup
τ :t+1≤τ≤T

E [Uτ (Xτ )|Xt = x ]

Value function: Vt(x) = max{Ut(x),E [Vt+1(Xt+1)|Xt = x ]}
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Interesting Stopping Rules

Single Cutoff Stopping Rule:
τ = min

t≤T
{xt ∈ [bt , x̄ ]}; fix bT = x

Binary Cutoff Stopping Rule:
τ = min

t≤T
{xt /∈ [at , bt ]}; fix aT = bT
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Single Cutoff Stopping Rule - Diagram

E[Vt+1(x)]

Ut(x)

Xt
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Binary Cutoff Stopping Rule - Diagram

E[Vt+1(x)]

Ut(x)

Xt
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Assumptions on Stochastic Process

Markov

Monotonic transition (equivalent to Xt+1 FOSD Xt)

Continuous transition

Full support

Examples: additive and multiplicative random walks (proof in
Kruse and Strack (2014))

In some examples: martingale
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Kruse and Strack (2014) - Results

Assumption: qt ∈ Q = {1}
Main result:

zt(x) = E [ut+1(qt+1 = 1,Xt+1)|Xt = x ]− ut(qt = 1, x)

If zt(x) is non-increasing (Single Crossing Condition):

Then a stopping rule is implementable if and only if it is a
(single) cutoff rule

Found closed form expressions for prices
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Single Cutoff Rule - Assumptions on Utility Function

Assumption: qt ∈ Q is an interval
[
0, Q̄

]
in R+

Assumption:
∂2ut(q, x)

∂q∂x
≥ 0
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Single Cutoff Rule - Conditions

Sufficient and Necessary conditions for implementability of all
single cutoff rules:

Spence-Mirrlees Condition (SM ) :
dqt(x)

dx
≥ 0

Pavan-Segal-Toikka’s Single Crossing Condition (SC PST ):

∂ut(qt , x)

∂x
≥ E

[
∂ut+1(qt+1,Xt+1)

∂x
I(Xt+1,Xt)|Xt = x

]
Impulse response function:

I(xt+1, xt) = −∂Ft+1(xt+1|xt)
∂xt

1

ft+1(xt+1|xt)
From PST: I(xt+1, x + t) captures ”marginal effects of the
current type on future ones”
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Single Cutoff Rule - Main Result

Theorem

Under assumptions on the stochastic process and the utility
function stated in the previous slides:
{qt}Tt=0 satisfies conditions SM and SC PST if and only if
(τ, {qt}Tt=0) is implementable for all single cutoff rules τ .
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Investment Example (from Slide 2)

Agent collects information about the value of a project Xt

until time τ

Agent then decides how much to invest qτ (money or effort)

Assumption: ut(q, x) = βtqx −
t∑

s=0

cs

Assumption: Xt+1 = Xt + εt , εt ∼ Gt independent
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Investment Example

Assumption: ut(q, x) = βtqx −
t∑

s=0

cs

Assumption: Xt+1 = Xt + εt , εt ∼ Gt independent

Then SM: q′t(x) ≥ 0

And SC: qt(x) ≥ βE [qt+1(Xt+1)|Xt = x ]

A modified version of the closed form formula for prices in KS
still applies
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Investment Example - Violate SC

For simplicity, let T = 2, β = 1 and G1 has mean 0 and
variance σ2

G

Consider implementing q0(x) = x and q1(x) = 2x

This does not satisfy SC

Then U0(x) =
x2

2
− p0(b0)

and E [V1(X1)|X0 = x ] = x2 + σ2
G
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Investment Example - Violate SC Diagram

E[Vt+1(x)]

Ut(x)

Xt
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Investment Example - Not Violate SC

Consider implementing q0(x) = x and q1(x) =
x

2
This does satisfy SC

Then U0(x) =
x2

2
− p0(b0)

and E [V1(X1)|X0 = x ] =
x2 + σ2

G

4
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Investment Example - Not Violate SC Diagram
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Main Result - Proof Sufficiency

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design
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Main Result - Proof Sufficiency

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

Some
algebra
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Proof - SC PST to Monotonic Zt

Marginal Incentives: Zt(x) = E [Ut+1(Xt+1)|Xt = x ]− Ut(x)

After some integration by parts:

dZt(x)

dx
= E

[
∂ut+1(qt+1(Xt+1),Xt+1)

∂x
I(x)

]
− ∂ut(qt(x), x)

∂x

Which is the SC PST condition:

∂ut(qt , x)

∂x
≥ E

[
∂ut+1(qt+1,Xt+1)

∂x
I(Xt+1,Xt)|Xt = x

]
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Main Result - Proof Sufficiency

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

Some
algebra

Kruse-Strack

Kruse-
Strack
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Main Result - Proof Necessity

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design
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Main Result - Proof Necessity

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

See
diagram
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Proof - Implementable to Monotonic Vt − Ut

E[Vt+1(x)]

Ut(x)

Xt
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Main Result - Proof Necessity

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

See
diagram

Some algebra
Induction
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Main Result - Proof Necessity

SM

SC

Zt increasing

Ut − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

See
diagram

Some algebra
Induction

From proof
of sufficiency
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Binary Cutoff Rule - Convexity Conditions (Not Feasible)

E[Vt+1(x)]

Ut(x)

Xt
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Binary Cutoff Rule from Two Types of Allocations

E[Vt+1(x)]

Ut(x)

Xt
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Binary Cutoff Rule - Assumptions and Notations

Two types of allocations qt = −q−t ≥ 0 or qt = q+
t ≥ 0

Assumption: qt ∈ Q is an interval
[
Q, Q̄

]
in R,Q < 0 and

Q̄ > 0
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Binary Cutoff Rule - Conditions

Sufficient and Necessary conditions for implementability of all
binary cutoff rules:

Spence-Mirrlees Condition (SM ) :
dq−t (x)

dx
≤ 0,

dq+
t (x)

dx
≥ 0

Pavan-Segal-Toikka’s Single Crossing Condition (SC PST ):

∂ut(−q−t , x)

∂x
≤ E

[
∂ut+1(−q−t+1,Xt+1)

∂x
I(Xt+1,Xt)|Xt = x

]
∂ut(q

+
t , x)

∂x
≥ E

[
∂ut+1(q+

t+1,Xt+1)

∂x
I(Xt+1,Xt)|Xt = x

]
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Binary Cutoff Rule - Main Result

Theorem

Under assumptions on the stochastic process and the utility
function stated in the previous slides:
{qt}Tt=0 satisfies conditions SM and SC PST if and only if
(τ, {qt}Tt=0) is implementable for all binary cutoff rules τ .
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Main Result - Proof Sufficiency

SM q−

SM q+

SC U−

SC U+

U− decreasing

U+ increasing

Z− decreasing

Z+ increasing

U−t − Vt decreasing

U+
t − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

Standard static
mechanism design
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Main Result - Proof Sufficiency
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single cutoff proof
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Main Result - Proof Sufficiency

SM q−

SM q+

SC U−

SC U+

U− decreasing

U+ increasing

Z− decreasing

Z+ increasing

U−t − Vt decreasing

U+
t − Vt increasing

qt implementable

τ implementable

Standard
static

mechanism
design

Standard static
mechanism design

Similar to
single cutoff proof

More algebra
Induction



Introduction Model Single Cutoff Rule Binary Cutoff Rule Conclusion

Proof - Plus Minus Notations

For example, when there are only two actions {-1, 1}:
Us: U− means ut(q = −1, x)− pt(−1)

and U+ means ut(q = 1, x)− pt(1)

Zs: Z− means E [Ut+1(−1,Xt+1)|Xt = x ]− Ut(−1, x)

and Z+ means E [Ut+1(1,Xt+1)|Xt = x ]− Ut(1, x)

Monotonicity of these Zs implies CS PST and they are strong
than the monotonicity of the following Marginal Incentives:

E [max{Ut+1(−1,Xt+1),Ut+1(1,Xt+1)}|Xt = x ]− Ut(−1, x)

E [max{Ut+1(−1,Xt+1),Ut+1(1,Xt+1)}|Xt = x ]− Ut(1, x)
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Proof - Plus Minus Zs Diagram

E[Vt+1(x)]

Ut(x)

Xt
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Main Result - Proof Necessity
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Advice Example (from Slide 3)

Unknown state θ in {-1, 1}; payoff linear in state.

Agent has private information: Xt is the belief of the state

Agent recommends action cancel project (qt = −1) or start
production (qt = 1), or continue research (wait until next
period to update Xt).

Assumption: Xt form a martingale

Assumption: ut(−1, x) = αx − ct and ut(1, x) = βx − ct with
α < 0 and β > 0
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Advice Example - Linear Utility + Martingale

Assumption: qt ∈ Q = {−1, ( cancel project );
1, ( start production )}
Assumption: Xt form a martingale

Assumption: ut(−1, x) = αx − ct and ut(1, x) = βx − ct with
α < 0 and β > 0

Then (τ, {qt}Tt=0) is implementable for all binary cutoff rule τ

A modified version of the closed form formula for prices in KS
still applies
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Advice – Proof

Value function Vt has derivatives bounded by α and β

Martingale + Monotonic Transition preserves this property
when taking conditional expectations
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Comparison with Kruse and Strack (2014)

Extension of KS to multiple terminal actions

In KS, SC is an assumption (sufficient) for implementing
single cutoff rules

Here, SC is a sufficient and necessary condition for
implementing all single cutoff rules
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Comparison with Pavan Segal and Toikka (2014)

Special case of PST where an agent could only choose qt once

Simpler expression for SC

In PST, SC is sufficient (stronger than the necessary condition
integral monotonicity) for implementing (qt , τ)

Here, SC is sufficient and necessary for implementing (qt , τ)
for all τ

In PST, no closed form solution for prices

Here, closed form solution modified from KS still applies
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In addition to KS and PST

Conditions for implementability of binary cutoff rules is not a
direct extension from KS

Model with two types of q that results in binary cutoff rules is
not special case of PST

Interpretable SC conditions for examples like investment and
advice example.
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Thanks

Thank you for attending this presentation

Thank Dr. Damiano for comments on the paper

Thank Dr. Peski for all the help on the paper and the
presentation
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