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Abstract. I analyze a class of dynamic mechanism design problems in which a single agent

privately observes a time-varying state, chooses a stopping time, and upon stopping, chooses

between one of two actions. The principal designs transfers that depend only on the time the

agent stops and on the alternative the agent chooses. The analysis provides sufficient and

necessary conditions for implementability in this environment. In particular, I show that

any stopping rule in which the agent stops the first time the state falls outside of an interval

in the state space can be implemented if and only if a pair of monotonicity conditions is

satisfied. This result extends Kruse and Strack (2015) to problems with two alternatives.

1. Introduction

In many economic situations, an agent wants to choose between two alternatives but is not

required to make the choice right away. Often, the agent can postpone the choice until later in

order to either gather more information or wait for more favorable conditions. Additionally,

another party, called a principal, has an interest in the timing and choices made by the agent

and can use transfers to provide incentives.

I model such a situation as a stopping problem with two actions. The agent observes a

Markov state, decides when to stop, and upon stopping, chooses between one of the two

actions. The agent’s payoffs are a sum of an intrinsic payoff, which depend on the time,

action, state, and a quasi-linear transfer received from the principal, which depends on the

time and the action choice. The goal of this analysis is to describe the range of choice rules

that can be implemented and to determine whether and how the principal can incentivize

the agent with quasi-linear transfers.
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Economic applications include:

 (Job Search) A worker observes a changing demand for his services and chooses

between taking up a job, continuing to search, or leaving the market (possibly to

retire, or to go back to school). The government decides on the amount of employment

insurance it offers to workers in order to achieve its own policy goals. This example

expands on the main example from Kruse and Strack (2015) by adding the possibility

that the worker can choose to leave the market.

 (Hypothesis Testing) The principal hires an econometrician to conduct a hypothesis

test. The econometrician performs a Bayesian sequential test of H0 vs H1. After

obtaining each sample, she can choose to reject one of the two hypotheses or ob-

tain an additional sample. Payments are based on sample size to incentivize the

econometrician to perform the designed test.

 (Project Funding) The principal, for instance, a public authority, a government

agency sponsoring research, or a city council, is deciding which one of two projects

it will invest extra resources into and wants to hire an investigator for advice. The

investment decision affects the utility of the investigator, so the principal would like

to find a payment scheme to incentivize the investigator to report truthfully.

In the above examples, the strategies for the agent consist of:

 (A stopping rule) The stopping rule can be complicated, but it often involves a

sequence of pairs of thresholds that may vary over time. If the state falls inside the

thresholds, the agent will continue; otherwise, she stops.

 (A choice of alternative) After the agent stops, she makes a choice between the two

alternatives.

The above class of strategies is defined formally as the two-sided threshold rules. I analyze

the implementability of this class of strategies.

The main result describes the necessary and sufficient conditions for the intrinsic utility

and Markov process that ensure the implementability of all two-sided threshold rules. The

conditions are similar to the single crossing condition in Kruse and Strack (2015) and the
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monotonicity condition from Pavan, Segal, and Toikka (2014). In addition, closed form

formulas for the transfers that implement these stopping rules can be found.

The agent’s problem has been studied since Wald p1947q and Arrow, Blackwell, and Gir-

shick p1949q as the optimal stopping problem. The principal’s problem, which is the focus

of this analysis, is most closely related to Kruse and Strack (2015), where the principal

chooses transfers to influence the stopping rule used by the agent. Kruse and Strack (2015)

define a cut-off stopping rule as a strategy where the agent stops the first time the state

she privately observes is above a certain threshold. They make a single crossing assumption

(KS-SCC) that is a sufficient and necessary condition for the implementability of cut-off

rules. It requires the expected difference between utilities in consecutive periods, which they

call marginal incentives, to be weakly decreasing in the state. They also give closed form

solutions for the transfers.

The model is also related to Pavan, Segal, and Toikka (2014). In their paper, there are

multiple agents, and each agent can choose an allocation after each period. They show that

a sequence of allocations is implementable if and only if an integral monotonicity condition

holds. They also have a stronger condition called the single crossing condition (PST-SCC),

which is a sufficient condition for implementability. PST-SCC requires the expected sums of

discounted marginal utilities to be monotonic in state. The discount factor they use is the

impulse response function. They give a characterization of the transfers but not closed form

formulas for the transfers.

Due to the assumption that the agent can choose one of two actions only once, not only

am I able to simplify PST-SCC, but the conditions in this model will also hold for utility

functions that are non-monotonic in a particular way that does not satisfy KS-SCC. If the

utilities are increasing in state for one alternative and decreasing in state for the other, then

these conditions imply implementability as well.

I show that the condition of implementability can be simplified for the previously discussed

examples:
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 (Job Search) All stopping rules with two-sided thresholds are implementable if the

expected change in utility from choosing the same action in any two consecutive

periods is weakly decreasing in the current state.

 (Hypothesis Testing) As long as the payoff from accepting the more likely hypothesis

is higher, the Bayesian sequential test with any size is implementable.

 (Project Funding) Suppose the investigator observes a state process that is additive,

the payoff is linear in the states, and the slopes have different signs for different

projects. Then, every strategy where the investigator stops when the state is either

too high or too low is implementable.

Section 2 introduces the model, Section 3 gives sufficient and necessary conditions when

threshold rules are implementable, and Section 4 provides simplifications of these conditions

for examples with special utilities or stochastic processes of the states.

2. Model

2.1. Agent’s Problem. Consider a stopping problem with two possible terminal actions. In

each period t � 0, 1, ..., T , an agent observes the state of a one-dimensional Markov process,

xt P rx, x̄s. Next, she chooses between three options: stop and choose action -1, stop and

choose action +1, or continue. If the agent stops at time τ � t and chooses qt P t�1,�1u,

she receives utility, ut pqt, xtq.

I make the following monotonicity assumption on the utility function.

Assumption 1. The period t utility functions are partially differentiable with respect to x

for all t P t0, 1, ..., T u, and,

But p�1, xq

Bx
¤ 0 and

But p�1, xq

Bx
¥ 0, @ x P rx, x̄s .

A strategy (or decision rule) is a sequence of mappings qt : rx, x̄s Ñ Q where Q � t�1, 0, 1u

is the set of decisions. The decision qt is independent of previous states x0, x1, ..., xt�1 because

the utility only depends on the current xt the agent observes. Each strategy induces a
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stopping time, which is a mapping τ : rx, x̄sT Ñ t0, 1, ..., T u defined so that,

τ px0, ..., xT q � min tt : qt pxtq � 0u .

2.2. Implementation Problem. The principal chooses transfers, pt p�1q and pt p�1q, in

order to provide the agents with incentives to pick a particular strategy (or decision rule),

qt. The agent observing state xt in period t gets payoff ut pqt, xtq � pt pqtq if she stops and

makes a decision, qt P t�1,�1u.

The expected utility at time 0 for the agent is,

U0 pq, xq � E ruτ pqτ , Xτ q � pτ pqτ q |X0 � xs

where τ is the stopping time implied by the strategy q.

Definition 1. A strategy, q � tqtu
T
0 , is implementable if there are transfers tptu

T
t�0 such

that for an agent observing state x P rx, x̄s at time t � 0,

tqtu
T
t�0 � arg max

tq1tu
T
t�0

E ruτ 1 pq1τ 1 pXτ 1q , Xτ 1q � pτ 1 pq
1
τ 1 pXτ 1qq |X0 � xs .

A strategy (with its implied stopping time) is implementable if it is possible to provide

the agent with incentives to choose that strategy.

2.3. Threshold Rules. I am interested in threshold strategies where the agent stops when-

ever the state falls outside of a sequence of intervals, trat, btsu
T
t�0 .

Definition 2. A strategy, q, is a (two-sided) threshold strategy if there are sequences

tat, btu
T
t�0 such that at ¤ bt, aT � bT and,

qt �

$'''&
'''%

�1 if xt P rx, atq

0 if xt P rat, bts

�1 if xt P pbt, x̄s .
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I denote a threshold strategy with thresholds tat, btu
T
t�0 as qpa,bq . Kruse and Strack (2015)

uses cut-off stopping rules with only one sequence of thresholds, and such rules are special

cases where at � x .

2.4. Stochastic Process of the States. I follow assumptions similar to Kruse and Strack

(2015) on the stochastic process, tXtu
T
t�0. These assumptions are needed for the model to

be tractable.

Assumption 2. (Regular Transitions) The process tXtu
T
t�0 satisfies,

(1) For any continuous φ : rx, x̄s Ñ R,E rφ pXt�1q |Xt � xs is continuous in x.

(2) For any weakly decreasing φ : rx, x̄s Ñ R,E rφ pXt�1q |Xt � xs is non-increasing in x.

(3) For any interval ra, bq � rx, x̄s ,E
�
1Xt�1Pra,bq|Xt � x

�
¡ 0 for each x P rx, x̄s.

The continuity-preserving and monotonicity-preserving properties are used to ensure that

the shape of the value function in the future periods stays the same after taken expecta-

tions given the state of the current period. The full support property is included to ensure

the uniqueness of the representation of a threshold rule. Without full support, multiple

thresholds can be used to represent the same stopping time.

3. Implementability

Theorem 1 finds conditions under which all threshold rules are implementable.

Definition 3. Define the impulse response function as,

I pxt�1, xtq � �
BFt�1 pxt�1|xtq

Bxt

1

ft�1 pxt�1|xtq
.

The impulse response function is used in Pavan, Segal, and Toikka (2014) to state their

monotonicity conditions, too. It is used as a discount factor for marginal utilities so that

they can be added over time.

Theorem 1. The following are equivalent:

(1) (Implementability) Every two-sided threshold rule, qpa,bq , is implementable.
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(2) (Monotonic Marginal Incentive Condition) The following marginal incentive function

is weakly decreasing for each t P t0, 1, ..., T u and x P rx, x̄s.

E rut�1 ps,Xt�1q |Xt � xs � ut ps, xq , for s P t�1,�1u

(3) (Single Crossing Condition) The following single crossing condition is satisfied for

each t P t0, 1, ..., T u and x P rx, x̄s.

s � E
�
But�1 ps,Xt�1q

Bx
I pXt�1, Xtq |Xt � x

�
¤ s �

But ps, xq

Bx
, for s P t�1,�1u

Both the marginal incentive condition and the single crossing condition are sufficient to

implement any threshold rule but are not necessary to implement a particular threshold rule.

They are only necessary to implement all possible threshold rules at the same time.

The two conditions for implementability are equivalent due to a simple integration by

parts. The sufficiency of the single crossing condition p3q ñ p1q can be proven using results

in Pavan, Segal, and Toikka (2014). In particular, the assumptions about the utility function

and the single crossing conditions imply strong monotonicity, which is a sufficient condition

for implementation from their paper. I present an alternative proof for this specific model,

which, in addition to proving implementability, also gives a closed form formula for the

transfers and contains parts that are useful for the proof of the necessity of the single crossing

conditions in implementing threshold rules. The sufficiency of the marginal incentives p2q ñ

p1q for one-sided thresholds with at � x is shown in Kruse and Strack (2015), and I modify

and extend their proof for two-sided thresholds, where the principal needs to prevent the

agent from choosing both actions -1 and +1 in future periods if he wants the agent to stop

in the current period.

The proof for the necessity of the two conditions for implementing all threshold rules

p1q ñ p2q or p3q is new and does not rely on the techniques or results from Kruse and Strack

(2015) or Pavan, Segal, and Toikka (2014).

In order to describe these transfers, additional notations are needed.
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Definition 4. Define the modified marginal incentive functions as,

zt pxq � E
�
max
s1

tut�1 ps
1, Xt�1qu |Xt � x

�
� max

s1
tut ps

1, xqu ,

z̃t ps, xq � E
�
max
s1

tut�1 ps
1, Xt�1qu |Xt � x

�
� ut ps, xq , for s P t�1,�1u .

The function zt pxq is the expected gain in utility if the agent continues for another period

relative to stopping in period t. The function z̃t ps, xq is the expected gain in utility if the

agent continues for another period relative to reporting the state she is supposed to.

Corollary 1. The following sequence of transfers implement qpa,bq.

pt p�1q � z̃t p�1, atq �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � ats

pt p�1q � z̃t p�1, btq �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � bts

The expressions are similar to the ones given in Kruse and Strack (2015), but the formulas

for both zt and z̃t are different from the one defined in their paper and are also different

from the expression in the marginal incentive condition in Theorem 1. The monotonicity of

the price functions is the key part in proving p2q and p3q ñ p1q in Theorem 1.

4. Examples

Example 1. A worker observes job offers with wage xt P r0, x̄s in period t and decides

whether to accept the offer, reject the offer and permanently leave the market, or keep

searching. The government pays lump sum employment insurance , pτ , in period τ to

incentivize the worker to accept offers above some upper threshold and to exit the market

when offers are below some lower threshold. Alternatively, the government can use other tax

or transfer schemes to influence the worker into accepting offers earlier or to stop searching

and get additional education. This example extends the one in Kruse and Strack (2015) to

include the possibility of the worker exiting the market.
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For example, if the utility the worker gets is equal to the wage when she accepts the offer,

and 0 when she stops searching permanently, the conditions in Theorem 1 become,

zt pxq � E rXt�1|Xt � xs � x is weakly decreasing in x.

If the above condition holds, then the following transfers can be used to incentivize the

worker to choose a job search strategy described by any thresholds tpat, btqu
T.
t�0

pt p exit market q � E rXt�1|Xt � ats �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � ats

pt p accept offer q � zt pbtq �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � bts

The transfers are different from the expressions in Kruse and Strack (2015) due to the

addition of lower thresholds tatu
T
t�0. If at � 0 for t � 0, 1, 2, ..., T , then the condition and

transfer functions coincide with the ones in their paper.

Example 2. A Bayesian statistician must distinguish between the two possible states of the

world, s � �1 or s � �1. The statistician starts with a belief, x0, that the state is +1. The

statistician observes data and uses it to update the belief to posterior xt. In each period t,

she can either decide to collect more data at cost ct, or choose one of two possible states. If

in period t, she decides that the state of the world is qt � s and the true state of the world

is also s, her payoff is equal to αt psq. Otherwise, if the true state is -s, she gets βt psq, for

each t and s P t�1,�1u. Define the following constants,

mt p�1q � αt p�1q � βt p�1q and mt p�1q � βt p�1q � αt p�1q ,

kt p�1q � βt p�1q �
ţ

i�0

ci and kt p�1q � αt p�1q �
ţ

i�0

ci.

Then, the utility function is linear in the posterior belief,

ut pqt, xtq � mt pqtqxt � kt pqtq ,

and Assumption 1 is equivalent to βt psq   αt psq for each t.
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The single crossing condition in Theorem 1 is simplified to,

E rI pXt�1, Xtq |Xt � xs ¤ min

"
mt p�1q

mt�1 p�1q
,
mt p�1q

mt�1 p�1q

*
.

If the belief process forms a martingale and αt psq � α psq , βt psq � β psq for each t, then the

single crossing condition in Theorem 1 is always satisfied due to the following derivation,

E rI pXt�1, Xtq |Xt � xs �
d

dx
pE rXt�1|Xt � xsq � 1,

because of the martingale property, and since α and β are constant over time.

mt�1 p�1q

mt p�1q
�
mt�1 p�1q

mt p�1q
� 1

Therefore, the single crossing condition is always satisfied. Bayesian hypothesis test of any

size can be implemented by adding the tptu
T
t�0 from Theorem 1 to the loss function or,

equivalently, to the cost of the samples.

Example 3. A government agency sponsoring research is choosing which one of two univer-

sities to invest in and hires an investigator for advice. The investigator observes an additive

state process, Xt�1 � Xt� εt, where εt � Gt, for some independently distributed Gt and the

utility is linear in the state with a constant discount factor δ   1.

ut pqt, xtq � δt pmt pqtqxt � kt pqtqq

Then, the single crossing condition in Theorem 1 is always satisfied due to the following

derivation,

I pxt�1, xq � �

�
BGt pxt�1 � xq

Bx



1

gt pxq
� 1,

because of the additivity of the process, and,

mt p�1q

mt�1 p�1q
�

mt p�1q

mt�1 p�1q
�

1

δ
.
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Therefore, linear utility with either martingale processes or additive processes leads to im-

plementability.

5. Proof of Theorem 1

Define the expression in Theorem 1 as ˜̃z.

˜̃zt ps, xq � E rut�1 ps,Xt�1q |Xt � xs � ut ps, xq , for s P t�1,�1u

This is the expected gain in utility for waiting for one more period while being forced to

report the same state, s.

Equivalence p2q ô p3q: I start by converting the single crossing condition in Theorem 1

to the monotonicity condition of ˜̃zt.

Lemma 1. The single crossing condition in Theorem 1 holds if and only if s � ˜̃zt ps, xq is

weakly decreasing for s P t�1,�1u.

Implication p2q ñ p1q: I prove the monotonicity of s � ˜̃zt ps, xq implies implementability,

by starting with the following observation on z̃t.

Lemma 2. If s � ˜̃zt ps, xq is weakly decreasing, then s � z̃t ps, xq is always weakly decreasing.

Define the following transfer functions. They are not the actual transfers because they

also depend on x.

pt ps, xq � z̃t ps, xq �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � xs

The following lemma shows the monotonicity of pt ps, xq.

Lemma 3. If s � ˜̃zt ps, xq is weakly decreasing, then s � pt ps, xq is weakly decreasing.

The value function has the following form by induction.

Lemma 4. The value function is,

Vt pxq � ut pxq �
T�1̧

s�t

E rzs pmin tmax tas, Xsu , bsuq |Xt � min tmax tat, xu , btus .
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At the end, I show that, given the above value function, any threshold strategy is imple-

mentable.

Lemma 5. Given the value function from Lemma 4, qpa,bq is implementable.

Implication p1q ñ p2q: I prove implementability implies the monotonicity of s � ˜̃zt ps, xq.

Lemma 6. Suppose qpa,bq is implementable for any thresholds pa, bq, then s � ˜̃zt ps, xq is weakly

decreasing.

The following are the proofs of the lemmas used.

Proof of Lemma 1:

s �
d˜̃zt ps, xq

dx
� s �

d

dx
E rut�1 ps,Xt�1q |Xts � s �

But ps, xq

Bx

� �s �

» x̄

x

But�1 ps, xt�1q

Bx

BFt�1 pxt�1|xq

Bx
dxt�1 � s �

But ps, xq

Bx

� s �

» x̄

x

But�1 ps, xt�1q

Bx
I pXt�1, xq ft�1 pxt�1|xq dxt�1 � s �

But ps, xq

Bx

� s � E
�
But�1 ps,Xt�1q

Bx
I pXt�1, Xtq |Xt � x

�
� s �

But ps, xq

Bx

Therefore, s � ˜̃zt ps, xq is weakly decreasing if and only if,

s � E
�
But�1 ps,Xt�1q

Bx
I pXt�1, Xtq |Xt � x

�
¤ s �

But ps, xq

Bx
,

which is the condition in Theorem 1. �

Proof of Lemma 2: To shorten the notations, define,

ut pxq � max
s1

tut�1 ps
1, Xt�1qu .

Due to Assumption 1, following inequality holds,

dut p�1, xq

dx
¤
dut pxq

dx
¤
dut p�1, xq

dx
.
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Therefore, s � z̃t ps, xq is also weakly decreasing if the condition in Theorem 1 holds.

s �
dz̃t ps, xq

dx
¤ s �

d˜̃zt ps, xq

dx
¤ 0

�

Proof of Lemma 3: When t � T � 1,

s � pt ps, xq � s � z̃T�1 ps, xq ,

which is weakly decreasing from Lemma 2.

The rest of the proof goes by backward induction on t. Assuming s � pt�1 ps, xq is weakly

decreasing,

s � pt ps, xq � s �

�
z̃t ps, xq �

T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � xs

�

� s �

�
z̃t ps, xq �

T�1̧

s�t�2

E rzs pmin tmax tas, Xsu , bsuq |Xt � xs

�

� s � E rzt�1 pmin tmax tat�1, Xt�1u , bt�1uq |Xt � xs

� s � E rpt�1 ps,Xt�1q |Xt � xs

� s � E rut�1 ps,min tmax tat, Xt�1u , btuq |Xt � xs � s � ut ps, xq

� E rs � pt�1 ps,Xt�1q |Xt � xs � s � ˜̃zt ps, xq .

Here, s � pt�1 ps,Xt�1q is weakly decreasing by induction hypothesis, s � ˜̃zt ps, xq is weakly

decreasing by assumption, and taking conditional expectations on Xt preserves monotonicity

by Assumption 2. Therefore, s � pt ps, xq is weakly decreasing in x for s P t�1,�1u. �

Proof of Lemma 4: The base case when t � T is,

VT pxq � uT pxq with pt p�1, atq � pt p�1, btq � 0.

If pT � 0 at aT � bT , redefine ut ps, xq by subtracting the pt p�1, atq from it for all t.
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For the induction, I assume that,

Vt�1 pxq � ut�1 pxq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt�1 � min tmax tat, xu , btus .

For x ¤ x�t , the value function can be simplified to,

Vt pxq � max tut p�1, xq � pt p�1, atq , ut p1, xq � pt p�1, btq ,E rVt�1 pXt�1q |Xt � xsu

� max tut p�1, xq � pt p�1, atq ,E rVt�1 pXt�1q |Xt � xsu

� ut p�1, xq � max

#
z̃t p�1, atq �

T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � ats ,

z̃t p�1, xq �
T�1̧

s�t�1

E rzs pmin tmax tat, Xsu , btuq |Xt � xs

+

� ut p�1, xq � z̃t p�1,max tat, xuq

�
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � max tat, xus

� ut p�1, xq � E rut�1 pXt�1q |Xt � max tat, xus � ut p�1,max tat, xuq

�
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � max tat, xus .

The second to last line is obtained by substituting in the transfers and applying the induction

hypothesis. �

Proof of Lemma 5: I define Ut pxq as the utility the agent observing state x gets if she stops.

Ut pxq � max tut p�1, xq � pt p�1, atq , ut p�1, xq � pt p�1, btqu

Let x�t be the x that satisfies ut p�1, xq � pt p�1, atq � ut p�1, xq � pt p�1, btq. Then due to

the monotonicity of ut ps, xq from the assumption of the lemma, Ut pxq can be rewritten as,

Ut pxq �

$&
% ut p�1, xq � pt p�1, atq if x ¤ x�t

ut p�1, xq � pt p�1, btq if x ¥ x�t .
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If x ¡ x�t , using similar arguments, we obtain,

Vt pxq � ut p�1, xq � E rut�1 pXt�1q |Xt � min tx, btus � ut p�1,min tx, btuq

�
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � max tat, xus .

Combining the above two pieces results in the desired form,

Vt pxq � ut pxq � E rut�1 pXt�1q |Xt � min tmax tat, xu , btus � ut pmin tmax tat, xu , btuq

�
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � min tmax tat, xu , btus

� ut pxq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuqs � zt pmin tmax tat, xu , btuq

� ut pxq �
T�1̧

s�t

E rzs pmin tmax tas, Xsu , bsuqs .

Therefore, if x   at ,

Vt pxq � Ut pxq � Vt pxq � put p�1, xq � pt p�1, atqq

� z̃t p�1, atq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � ats

� z̃t p�1, atq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � ats

� 0.

The same expression can be found for x ¡ bt .
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If at ¤ x ¤ x�t ,

Vt pxq � Ut pxq � Vt pxq � put p�1, xq � pt p�1, atqq

� z̃t p�1, xq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � xs

� z̃t p�1, atq �
T�1̧

s�t�1

E rzs pmin tmax tas, Xsu , bsuq |Xt � ats

¥ 0.

Similarly, if x�t ¤ x ¤ bt ,

Vt pxq � Ut pxq ¥ 0,

and if x ¥ bt ,

Vt pxq � Ut pxq � 0.

Combining the four pieces for x in different parts of the domain, we get,

Vt pxq � Ut pxq

$&
% � 0 if x R rat, bts

¥ 0 if x P rat, bts .

Therefore, the optimal strategy is qpa,bq, and this is implementable by transfers pt p�1, atq

and pt p�1, btq, which are the transfers given in Lemma 3. �

Proof of Lemma 6: Consider the two sequences of thresholds tpat, x̄qu
T
t�0 and tpx, btqu

T
t�0.

Given tpx, btqu
T
t�0 is implementable, take x   x1 and assume ˜̃zt p�1, xq   ˜̃zt p�1, x1q for a

contradiction.
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For x, the value function in the recursive form is given by,

Vt pxq � Ut pxq � max tUt pxq ,E rVt�1 pXt�1q |Xt � xsu � Ut pxq

� max t0,E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs

�E rut�1 pXt�1q |Xt � xs � ut p�1, xq � pt p�1, atqu

� max
 
0,E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs � ˜̃zt p�1, xq � pt p�1, atq

(
.

All of the future transfers are fixed for different values of bt. Therefore, Vt�1 pxq and Ut pxq

are fixed for different values of bt. Consider two cases for bt as follows:

For x   x1, if the following holds,

E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs ¤ E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � x1s ,

I implement the stopping rule bt � x1. This means that the agent observing state xt � x

should continue at time t. However,

E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs � ˜̃zt p�1, xq � pt p�1, atq

  E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � x1s � ˜̃zt p�1, x1q � pt p�1, atq

� 0.

The inequality shows that it is optimal for the agent observing state xt � x to stop, contra-

dicting the definition of the stopping rule with bt � x1 ¡ x.

Similarly, if the following holds,

E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs ¥ E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � x1s ,
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I implement the stopping rule bt � x. It means that the agent observing state xt � x should

stop at time t. However,

E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � x1s � ˜̃zt p�1, x1q � pt p�1, atq

¡ E rVt�1 pXt�1q � ut�1 pXt�1q |Xt � xs � ˜̃zt p�1, xq � pt p�1, atq

� 0.

This shows that it is optimal for the agent observing state xt � x1 to continue, contradicting

the definition of the stopping rule with bt � x   x1.

Therefore, ˜̃zt p�1, xq is weakly decreasing in x.

Similarly, ˜̃zt p�1, xq is weakly increasing in x since tpat, x̄qu
T
t�0 is implementable.

Therefore, s � ˜̃zt ps, xq is weakly decreasing in x for s P t�1,�1u. �
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