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Abstract. I apply a mechanism design approach to committee search problems, such as

a department’s hiring process or a couple’s search for a house. A special class of simple

dynamic decision rules has agents submit, in each period, one of three votes: veto, approve,

or recommend; the current option is adopted whenever no agent vetoes and at least one

agent recommends. I show that every implementable payoff can be attained by randomizing

among these simple rules. This result dramatically simplifies the design problem.

1. Introduction

A hiring committee with two members receives job applications and conducts interviews

until a position is filled. A decision is made right after each interview and is irreversible.

Every committee member obtains private value from hiring a candidate. A common decision

rule is the unanimity rule, according to which a candidate is hired whenever he is preferred

by both members. Another possibility is a rule according to which each member submits

a numerical score for a candidate and hiring occurs whenever the sum or average score is

above a preset threshold.

A married couple looks for a house until they decide on purchasing one. The Canadian

housing market is competitive, and a house is gone before a new one becomes available. The

husband and the wife have different views regarding the ideal house, and their preferences

with respect to its style and size may differ. In many households, decisions are not made

collectively, and one member can establish dictatorship. In other cases, each member of

the couple rates a house as ”ideal”, ”acceptable” or ”uninhabitable”, and they purchase the

house if it is not uninhabitable for either member and ideal for at least one.
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Two coauthors periodically gain access to new data sets. The authors have differing

opinions about whether a certain data set could lead to interesting results. Data sets are

costly to obtain and process, and they are likely to be used by other authors before a new

one appears. A reasonable decision rule could be adopting a data set whenever at least one

of the coauthors thinks the potential results are interesting. The threshold for a data set to

be deemed interesting can vary between coauthors and and over time.

husband’s valuation

wife’s valuation

region to buy house

not buy

uninhabitable

acceptable

ideal

Figure 1. A possible decision rule in the couple’s housing example

In all of these scenarios, two agents have to make a collective and irreversible decision

regarding an option to adopt when facing options that are presented to them sequentially.

Monetary transfers are not feasible. All the decision rules in these examples are plausible ones

that are used widely in various collective search problems. In this paper, I focus on a class

of simple voting rules, called ternary rules, that give each agent the power to veto, approve,

or recommend an option, and the current option is adopted whenever no one vetoes and at

least one of the agents recommends. It is similar to the ”ideal-acceptable-uninhabitable” rule

described in the house-searching example and in Figure 1. The shaded region in Figure 1

depicts the set of value pairs that lead to the purchase of the current house. The contribution

of this paper is showing that every implementable decision rules is payoff-equivalent to some



DESIGN OF SEARCH BY COMMITTEES 3

randomization among ternary rules, and as a result, a designer can restrict attention to the

use of only these simple voting rules.

In particular, I consider a model in which two agents observe private values of, for example,

hiring a candidate, in every period. The values are independent over time, but the values from

different agents in the same period can be correlated. In each period, either the candidate

is hired, in which case, every agent gets her private value, or the decision is delayed to the

next period. The mechanism incentivizes the agents to report their values truthfully without

using transfers, and it uses differing future decision rules to link incentives over time.

I assume a finite time horizon, and each agent obtains a fixed value from an outside option

if no candidate is ever hired. In the last period, the only implementable decisions are,

 unanimity, where the candidate is hired when both agents have values higher than

their outside options,

 dictatorship, where the candidate is hired as long as the dictator agent has value

higher her outside option,

 reverse unanimity, where the candidate is not hired when both agents have values

lower than their outside options, and

 constant, where the candidate is either always hired or never hired.

In the second to last period, a ternary rule specifies a lower threshold of value below which

an agent vetoes and an upper threshold above which an agent recommends. It also needs to

specify which rule to use in the last period after each pair of reported values. The following

is an example of an implementable ternary rule.

 If one agent recommends and the other does not veto, the candidate is hired, and

the search ends.

 If one agent recommends and the other vetoes, the candidate is not hired, and the

agent who recommends becomes the dictator in the last period.

 If both agents choose to either approve or veto, the candidate is not hired, and the

agents use the unanimity in the last period.
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The reason for using the dictator rule is to give the agent who vetoes another agent’s preferred

candidate a lower expected future payoff as punishment to ensure that veto power will be

exercised with discretion.

husband’s valuation

wife’s valuation

region to buy house

not buy

veto region (VR)

approval region (AR)

recommendation region (RR)

VR AR RR

Figure 2. Another possible decision rule in the couple’s housing example

Many other decision rules are implementable in the periods before the last such as the one

depicted in Figure 2. Given an implementable rule, the domain of each agent’s value can be

partitioned into three regions:

 the region where the candidate is not hired regardless of the other agent’s value,

called the veto region,

 the region where the candidate is hired as long as the other agent does not veto,

called the recommendation region, and,

 the remaining region, called the approval region.

A candidate may or not may be hired in the region where both agents approve. Among

the rules with the same partitions, the one that always rejects the candidate in the region

where both agents approve is a ternary rule, and it yields the highest payoffs for both agents.

This is the case because, intuitively, when considering a candidate whom both agents do not

recommend, no agent will have a significant loss from continuing the search, and on average,

they can both be better off if they continue.
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For the same reason, the rule that always hires the candidate in the region where both

agents approve is another ternary rule that yields lower payoffs for both agents. The dictator

rule, according to which the candidate is hired whenever the dictator’s value is above some

threshold, is another special case of a ternary rule. With a carefully chosen threshold,

dictatorship gives one agent higher payoff and the other agent lower payoff compared to

the original rule. Therefore, any implementable decision rule is payoff-equivalent to the

randomization between these ternary rules.

Technically, the model involves the implementation of an incentive compatible mechanism.

Dynamic ex-post incentive compatibility is used as the definition of implementability so that

the solution is robust to private communication between agents and robust to correlation

between values and beliefs of the agents. I also restrict attention to mechanisms that are

deterministic in every period, where either the candidate is hired for certain, or the decision

is delayed. These assumptions make the model tractable. I make other assumptions for

the purpose of presentation. For example, there are only two agents and a finite number

of periods, and the private values are drawn from distributions with full support on some

compact set and are independent over time. Those assumptions can be relaxed without

significantly changing the main results.

This paper is closely related to the literature on dynamic mechanism design without

transfers. Guo and Hörner (2015) investigate the problem without transfers, and in which

goods can be allocated in multiple periods. They characterize the optimal mechanism and

provide a simple implementation in which the agents have virtual budgets. Lipnowski and

Ramos (2016) develop a similar model with similar results, in which the principal has less

commitment power. In this model, the principal can decrease the veto threshold in the next

period if she exercises her veto power. This is similar to the budget mechanism from Guo

and Hörner (2015) in the sense that the agent has a virtual budget of veto power, and if she

vetoes excessively, she will gradually lose her power to veto.

Kovác, Krähmer, and Tatur (2013) examine the stopping problem in which only a single

good is allocated. In their model, the optimal mechanism is one in which the principal chooses
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different probabilities for assigning the good at different times to incentivize the agent’s use

of the stopping rule the principal prefers. I focus on allocation rules that are deterministic in

each period, so instead of change probabilities, the principal changes the amount of control

an agent has over the allocation in every period to incentivize an agent. The size of the region

where an agent has more control over the allocation, for example, to veto or recommend it,

is different in every period, and this is used in place of the probabilities in the deadline

mechanism proposed by Kovác, Krähmer, and Tatur (2013). Both Guo and Hörner (2015)

and Kovác, Krähmer, and Tatur (2013) focus on single-agent problems, whereas this paper

focuses on problems with more than one agent.

Johnson (2014) considers the problem with multiple agents, but the good is allocated to

only one of the agents. He uses the promised utility approach where the principal promises

future allocation rules that correspond to different expected payoffs to incentivize truth-

telling. I use the same approach, but I consider the problem with a public good. In his

model, the agents trade favors in a virtual market for decision rights, and as a result, they

take turns obtaining their favorite private allocation. In this model, the agents also trade

decision rights, but the goal is to wait for the public allocation that is preferable to every

agent.

Moldovanu and Shi (2013) study the committee search problem similar to mine. They

solve the stationary voting rules that have a single threshold for each agent. Compte and

Jehiel (2010) and Albrecht, Anderson, and Vroman (2010) develop a similar model and focus

on majority voting rules. I consider all direct revelation mechanisms, and one result states

that if decisions cannot be linked over time, then all implementable decision rules are the

voting rules with a single threshold, as in Moldovanu and Shi (2013). Additional decision

rules that are not voting rules can be implementable in this environment through the linking

of decisions over time, but I show that every implementable rule is payoff-equivalent to some

randomization among ternary voting rules, and this justifies the restriction to using only

simple voting rules when solving committee search problems.
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This paper is organized as follows. Section 1.2 introduces the model. Section 1.3 character-

izes implementability. Section 1.4 states and explains the main result: every implementable

payoff can be attained by randomizing among ternary rules. Section 1.5 concludes.

2. Model

In this section, I describe the agent’s stopping problem and the principal’s design problem.

In particular, I define implementability as dynamic ex-post incentive compatibility, and

explain why it is appropriate for this model.

2.1. Valuations. In this subsection, I describe the payoffs and the class of mechanisms.

I describe the model with two agents. A principal hires a new employee through a commit-

tee. In each period, a new candidate appears and each agent in the committee observes the

value of hiring the candidate. The number of periods T is finite and there is no discounting. I

assume that the values in period t, vt � pvt,1, vt,2q P V � rv, v̄s2 are independently distributed

over time with continuous density ft and full support V , and that the means are normalized

to 0 in each coordinate.

I use vt to denote a history of values, or reports, from period 1 to period t,

vt � pv1, v2, ..., vtq

� ppv1,1, v1,2q , pv2,1, v2,2q , ..., pvt,1, vt,2qq .

I assume independence over time but not between agents. Independence is not necessary

for the results in this paper to hold, I make the assumption only for simpler presentation.

In particular, the assumption simplifies the notations and the calculations in the examples.

The value of hiring a candidate to each agent may be correlated.

Due to the revelation principle for deterministic mechanisms with ex-post constraints in

Jarman, Meisner et al. (2017), I restrict attention to direct mechanisms, in which the agents

report only their own valuation in every period, which indicates whether to hire the candidate

in each period. I define the mapping q : V Ñ r0, 1s as a stage mechanism after some history

of reports, vt�1 � pv1, v2, ..., vt�1q. Here, q pvt|v
t�1q is the conditional probability that the
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candidate is hired in period t if the agents report vt after the history vt�1, condition on the

candidate not hired in periods before t. When the context is clear, I omit the history after

which the stage mechanism is used and use the expression q pvtq. The grand mechanism, Q,

is the collection of stage mechanisms following every possible history,

Q :
¤
t¤T

V t Ñ r0, 1s .

The mechanism can depend on historical reports. As a result, the principal can choose

different allocations in the future as rewards or punishments to incentivize truthful reports.

If no candidate is hired by the end of the last period, the agents get values from the outside

option in period T � 1, vT�1 � v� � pv�1, v
�
2q, in the interior of V . For each terminal history

in the form vT�1 � pv1, v2, ..., vT , v
�q P VT�1, the total probability of hiring the candidate

should add up to 1,

Ţ

t�1

q pvtq
t�1¹
s�1

p1 � q pvsqq � 1.

Given a grand mechanism Q, let wi,t pQ; vt�1q denote the ex-ante continuation value of

agent i in period t after some history vt�1 P V t�1, before vt, vt�1, ..., vT are realized, assuming

both agents report truthfully.

wi,t

�
Q; vt�1

�
� E

�
T�1̧

s�t

q pvsq
s�1¹
s1�1

p1 � q pvs1qq vi,s

�
.

For a mechanism, Q, the continuation value after history vt�1 is a pair,

wt

�
Q; vt�1

�
�
�
w1,t

�
Q; vt�1

�
, w2,t

�
Q; vt�1

��
.

In particular, the total payoff an agent, i, gets from a mechanism, Q, is wi,1 pQq.

I also define two grand mechanisms, Q1, Q2, to be payoff-equivalent after history vt�1 if,

wt

�
Q1; vt�1

�
� wt

�
Q2; vt�1

�
.
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In particular, the payoff-equivalence between two dynamic mechanism Q1 and Q2 after

history vt�1 is defined in terms of the ex-ante continuation payoff in period t before the

vector of period-t valuations pv1,t, v2,tq is realized.

2.2. Implementability. In this subsection, I define dynamic ex-post implementability and

outline the reasons it is used for this problem. Moreover, I define and restrict attention to a

subset of random mechanisms I call quasi-deterministic mechanisms, where the mechanism

is deterministic in each stage but between-period randomization is allowed.

Definition 1. A mechanism, Q, is (dynamic ex-post) incentive compatible, if in each period

t P t1, 2, ..., T u, after each history vt�1 P V t�1, every i P t1, 2u, every vi,t P rv, v̄s, and every

v�i,t P rv, v̄s,

vi,t P arg max
v̂i,tPrv,v̄s

vi,tq pv̂i,t, v�i,tq � p1 � q pv̂i,t, v�i,tqqwi,t�1

�
Q; vt�1, v̂i,t, v�i,t

�
.

A mechanism is dynamic ex-post incentive compatible (or the corresponding decision rule is

dynamic ex-post implementable) if, in every period, it is optimal to report the true valuation

given the other agent’s report.

This definition is the same as the one from Noda (2016), but without transfers and dis-

counting. Noda (2016) terms this type of implementability within-period ex-post incentive

compatibility, or wp-EPIC. Bergemann and Välimäki (2010), Parkes, Cavallo, Constantin,

and Singh (2010),and Athey and Segal (2013) use a more complicated version of ex-post

implementability since valuations and types in their models can be correlated over time.

Ex-post implementability is used because it is robust to private communication between

agents, within-period correlation between valuations, and variation in agents’ beliefs about

each other’s types. This definition of incentive compatibility also makes the model tractable.

Bergemann and Morris (2005) provide details regarding the use of ex-post incentive compat-

ibility.

I omit individual rationality constraints, and agents are forced to participate.
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I focus on mechanisms that are deterministic in every stage in which either the candidate

is hired for certain or the decision is delayed to the next period.

Definition 2. A stage mechanism, q, is deterministic if q p�q P t0, 1u. A grand mechanism, Q,

is quasi-deterministic if after every history vt�1 P V t�1, only randomization among multiple

deterministic stage mechanisms is used.

For example, after pv1,t, v2,tq are reported, the principal must either hire the candidate

with probability 1 or delay hiring to the next period, but in the event that the principal

chooses to delay, he can randomize among multiple stage mechanisms in period t� 1.

3. Implementability

In this section, I characterize the conditions for implementability. It is convenient to divide

the analysis into a few steps. In the first step, I characterize implementable stage mechanisms

in the last period. Next, I explain that the implementability in the dynamic setting can be

reduced to a version of the static problem with appropriately chosen continuation values.

Finally, I explain why the dynamic problem is substantially richer than a sequence of static

ones.

3.1. Static Implementation. In this subsection, I consider the problem when T � 1. In

this case, the continuation value is fixed at the outside option pv�1, v
�
2q. I describe a class of

mechanisms called binary stage mechanisms that characterizes implementability. The same

characterization applies to the last period when T ¡ 1.

Definition 3. A stage mechanism, q, is binary, with outside option pa1, a2q, if for each

i P t1, 2u, for every v�i,t P rv, v̄s, either q pvi,t, v�i,tq is constant p0 or 1) for every vi,t P rv, v̄s,

or,

q pvi,t, v�i,tq �

$&
% 0 if vi,t   ai

1 if vi,t ¡ ai

.

As shown in Figure 3, there are only six mechanisms that are binary for a fixed outside

option. The shaded regions are the acceptance regions, tvt : q pvtq � 1u, where the candidate
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v1,t

v2,t

v v̄
v

v̄

a1

a2

q � 1

q � 0

Unanimity

v1,t

v2,t

v v̄
v

v̄
q � 1

q � 0

a2

a1

Reverse unanimity

v1,t

v2,t

v v̄
v

v̄
q � 1

Constant at 1

v1,t

v2,t

v v̄
v

v̄
q � 1

q � 0

a1

Dictator for agent 1

v1,t

v2,t

v v̄
v

v̄
q � 1

q � 0

a2

Dictator for agent 2

v1,t

v2,t

v v̄
v

v̄

q � 0

Constant at 0

Figure 3. All six binary stage mechanisms

is hired. The remaining region is where the candidate is not hired and the outside option

pa1, a2q is given to the agents.

Lemma 1. For T � 1, if a quasi-deterministic mechanism, Q, is incentive compatible, then

the (only) stage mechanism q p�|Hq must be binary with outside option pv�1, v
�
2q.

The intuition for Lemma 1 is as follows. Note that in each of the six binary stage mech-

anisms, whenever there is a threshold above which the candidate is hired and below which

the candidate is not, the threshold value must be v�1 for agent 1 and v�2 for agent 2. This

is because, in the last period, if the candidate is still not hired, the agents get pv�1, v
�
2q in

period T �1. For an agent and a fixed report from the other agent, if the mechanism always

hires the candidate or never hires the candidate, this agent will be indifferent between re-

porting any value, and as a result, she will not misreport. Otherwise, if the mechanism hires

the candidate when she reports a value lower than the outside option, she will misreport

a higher value and obtain the outside option instead; and if the mechanism does not hire
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the candidate when she reports a value higher than the outside option, she will misreport a

lower value to get the candidate hired. Therefore, the only incentive-compatible mechanism

hires the candidate if and only if an agent reports a value higher than the outside option.

3.2. Dynamic Implementation. In this subsection, I show how the dynamic problem can

be reduced to a static one but with more than one possible outside options. I then state a

monotonicity condition as a characterization of all quasi-deterministic incentive-compatible

mechanisms in this environment.

An incentive-compatible grand mechanism consists of a collection of incentive-compatible

stage mechanisms, one after each history vt�1, with continuation value pairs for all reports

in the rejection region, tvt : q pvtq � 0u, where each continuation value pair corresponds to

some sequence of incentive-compatible stage mechanisms in periods t� 1, t� 2, ..., T.

Given a stage mechanism q p�|vt�1q and the report of every agent other than i, define the

following threshold function,

Ri pv�i,tq � inf tvi,t : q pvtq � 1u , (1)

with the convention that inf H � 8.

For deterministic stage mechanisms, there must thresholds pR1, R2q such that the can-

didate is hired if and only if an agent reports a value above the threshold. By incentive

compatibility, the continuation value function must be constant whenever the value observed

is below the threshold, since if it is not, an agent can misreport and obtain a different, and

possibly higher, continuation value. This observation is stated as the following lemma.

Lemma 2. A quasi-deterministic mechanism, Q, is incentive compatible if and only if after

every history vt�1, for each i P t1, 2u, and every v�i,t P rv, v̄s,

q pvtq �

$&
% 0 if vi,t   Ri pv�i,tq

1 if vi,t ¡ Ri pv�i,tq
,
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and for every vt � pvi,t, v�i,tq such that q pvtq � 0,

wi,t�1

�
Q; vt�1, vt

�
is independent of vi,t, and,

wi,t�1

�
Q; vt�1, vt

�
� Ri pv�i,tq if Ri pv�i,tq � 8.

The property is stated recursively: the payoff wi,t�1 is the payoff from some sequence of

stage mechanisms in periods t � 1, t � 2, ...T , and those stage mechanisms also satisfy the

above conditions.

v1,t

v2,t

v v̄
v

v̄
q � 1

q � 0

a1

r2

r1

a2

v1,t

v2,t

v v̄
v

v̄

R1 pxq

R2 pyq

y

x

z

R1 pv2,1q

Figure 4. Example of a stage mechanism that is possibly incentive compatible

An example of a stage mechanism that satisfies the condition of Lemma 2 is depicted in

the diagram on the left-hand side of Figure 4. According to the first part of Lemma 2, the

acceptance region has the monotonicity property: if the candidate is accepted at some value

pair vt, he is also accepted at the value pairs that dominate vt.

The continuation values for agent 1 along the line v2,t � z in the diagram on the right-hand

side of Figure 4 are constant; for example,

w1,t�1

�
vt�1, pv1,t, zq

�
� a1 @ v1,t P rv, v̄s .
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If continuation values for agent 1 are not the same along this line, then the type of agent 1

who has a value that leads to a lower continuation value will misreport and get a different

and higher continuation value.

The continuation values of agent 1 along v2,t � x in the diagram on the right-hand side of

Figure 4 are equal to the lowest valuation for which the candidate is accepted R1 pxq, or,

w1,t�1

�
vt�1, pv1,t, xq

�
� R1 pxq @ v1,t such that q pv1,t, xq � 0.

Not only must the continuation value be constant for every v1,t, it must be equal to R1 pxq,

because if the continuation value is higher, say R1 pxq � δ, then the type of agent 1 with

value R1 pxq �
δ

2
will have an incentive to misreport a lower value and delay hiring to get a

higher continuation value. Similarly, if the continuation value is lower, say R1 pxq � δ, then

an agent 1 observing R1 pxq�
δ

2
will have an incentive to misreport a higher value to get the

candidate hired in the current period.

Similar requirements apply to agent 2 along the vertical line segments in the diagram. For

example, the continuation value at the point px, yq is fixed for both players at,

wt�1

�
vt�1, px, yq

�
� pR1 pyq , R2 pxqq .

3.3. Linking Decisions. The principal can link payoffs over time by using mechanisms

that are history dependent. In this subsection, I demonstrate, with two examples, that such

mechanisms can lead to Pareto improvements over history-independent ones.

As demonstrated in Figure 4, there are many incentive-compatible stage mechanisms in

periods 1, 2, ..., T � 1 that look different from the ones in the last period, T . A key reason

that more allocation rules are implementable is the linking of decisions: the principal can

use different randomizations among stage mechanisms after different reports to punish or

reward the agents. I call these mechanisms history-dependent mechanisms.

Definition 4. A grand mechanism is history independent if the distributions over the stage

mechanisms after any two histories with the same length are the same, that is, if

q p�|vtq � q p�|ṽtq for every vt, ṽt P V t, and every t P t1, 2, ..., T u.
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In general, if the principal is restricted to the use of history-independent mechanisms, then

every stage mechanism in every period must be binary. This observation is stated in the

following corollary to Lemma 1.

Corollary 1. If a quasi-deterministic incentive-compatible mechanism is history indepen-

dent, then the stage mechanisms chosen with strictly positive probabilities after every history

must be binary.

Proof. After every history vt, only one continuation value is allowed in a history-independent

mechanism, because there is only one sequence of stage mechanisms in periods t�1, t�2, ..., T .

Then, every period is similar to the last period, with the exception that the outside option

may differ from pv�1, v
�
2q. The set of stage mechanisms that is incentive compatible with a

single outside option is the set of binary stage mechanisms for that outside option. �

The example below with T � 2 illustrates the difference between a history-dependent and

a history-independent mechanism.

v1,t

v2,t

v v̄
v

v̄
q � 1

0

0

(Const 0)
p0, 0q

(Const 0)
p0, 0q

(Const 0)
p0, 0q

v1,t

v2,t

v v̄
v

v̄
q � 1

a1

a2

(Const 0)
p0, 0q

(Dict 1)
pa1, 0q

(Dict 2)
p0, a2q

a2 � E rmax tv2,2, 0us

a1 � E rmax tv1,2, 0us

Figure 5. History independent (left) vs dependent (right) unanimity in period 1

Example 1. Suppose the value distributions are symmetric, the outside option is v� � p0, 0q,

and the stage mechanism in period 1 involves symmetric unanimity rules. The two choices

for the stage mechanisms in period 2 are

(1) constant 0 (or unanimity or reverse unanimity) after all histories in which the candi-

date is not hired in period 1 or,
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(2) dictatorship by agent 1 after histories in which the candidate is not hired because

agent 1 reports a value lower than a1 but agent 2 reports a value higher than a2;

dictatorship by agent 2 after histories in which the candidate is not hired because

agent 2 reports a value lower than a2 but agent 1 reports a value higher than a1;

and constant 0 in period 2 after histories in which the candidate is not hired because

both agents report values lower than their respective ai.

These two mechanisms are depicted in the diagrams in Figure 5. Mechanism p1q is history

independent and mechanism p2q is history dependent. Both diagrams depict the unanim-

ity stage mechanism in period 1, and the name of the stage mechanism and its resulting

continuation value pair from period 2 is written in each region in which that continuation

mechanism is used.

Note that a1 � E rmax tv1,2, 0us and a2 � E rmax tv2,2, 0us because the property in Lemma

2 must be satisfied and the pE rmax tv1,2, 0us , 0q and p0,E rmax tv2,2, 0usq are the continuation

value generated by the two dictator stage mechanisms in the second period.

In the next example, I show that there are rules that are not binary and give both agents

higher payoffs than any binary rules.

v1,t

v2,t

- v̄ v̄
- v̄

v̄
q � 1

q � 0

px, xq

px, xq

p�x, xq

px, xq

px, xq

px,�xq

�x

�x

x

�x

v1,t

v2,t

- v̄ v̄
- v̄

v̄
q � 1

q � 0

px, xq

px, xq

px, xq

px, xq

px, xq

px, xq

px, xq

px, xq

�x

�x

x

�x

Figure 6. A mechanism, not binary, (left) that yields higher payoffs for both
agents than the binary mechanism (right)
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Example 2. Suppose the values in some period t   T are independently piecewise uniformly

distributed such that the probability in each of the nine rectangular regions in the diagram

on the left-hand side of Figure 6 is
1

9
. I assume that in period t � 1, the highest possible

symmetric payoff pair that corresponds to some incentive-compatible mechanism is px, xq.

For simplicity, let v � �v̄ and suppose x  
1

7
v̄.

The difference in period t agent i payoff from the two stage mechanisms in Figure 6, after

the same history vt�1, is,

wi,t

�
Qleft; vt�1

�
� wi,t

�
Qright; vt�1

�
�

1

9

�
�x�

x� v̄

2

	
�

1

9
p2x� xq

¡
1

9

�
�x�

x� 7x

2



�

1

9
p2x� xq

� 0.

It can be shown that this stage mechanism yields higher payoff for both agents than do the

other symmetric binary stage mechanisms, including the reverse unanimity and constant

rules. In the next section, I show that this observation is not a coincidence and that all

Pareto optimal stage mechanisms have the same shape as the one depicted in the diagram

on the left-hand side of Figure 6.

4. Ternary Mechanisms

This section presents the main result of the paper. I start by defining ternary mechanisms,

an important class of mechanisms with a very simple interpretation. The main result shows

that any quasi-deterministic mechanism can be constructed by randomization among ternary

stage mechanisms. The proof is divided into two steps. In the first subsection, I show that

every Pareto optimal stage mechanism must be ternary. In the second subsection, I show that

the rest of the boundary of the set of payoffs that can be generated by quasi-deterministic

incentive-compatible mechanisms, that is not Pareto optimal, consists of only randomizations

among binary mechanisms. The main result is stated and discussed in the last subsection.
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Definition 5. A stage mechanism, q, is ternary if there are a1, r1, a2, r2, where v ¤ ai ¤

ri ¤ v̄ for each i P t1, 2u such that,

q pvtq �

$&
% 0 if vi,t   ai for some i or ai ¤ vi,t   ri for all i

1 if vi,t ¡ ri for some i and vi,t ¡ ai for all i
.

v1,t

v2,t

v v̄
v

v̄

pr�1, r
�
2q

pr1, r
�
2q

pa1, r
�
2q

pr�1, r2q

pr1, r2q

pr�1, a2q

q � 1

a1

r2

r1

a2

Figure 7. An example of a ternary stage mechanism

Figure 7 illustrates a typical ternary stage mechanism. The continuation values are placed

in each rectangular region instead of the names of the continuation stage mechanisms from

the next period. For general T ¡ 2, the complete sequence of stage mechanisms after the

current period is irrelevant and difficult to state explicitly; therefore, I write only the pair of

continuation values, such as pr1, r2q, in each rectangular region. This means that if the agents

report vt in this region, the candidate will not be hired and a sequence of stage mechanisms

that results in payoff wt pQ; vt�1q � pr1, r2q will be used in periods t�1, t�2, ..., T . As shown

in Figure 7, the continuation values without a star are fixed due to Lemma 2, and the values

with a star simply examples of possible continuation values.

Ternary stage mechanisms are voting mechanisms in which each agent can cast one of

three votes: veto, approve, or recommend. Every agent can veto the candidate, and in order

to hire the candidate, the principal needs at least one person to recommend the candidate.
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In particular, this voting rule does not hire the candidate if both agents approve and neither

recommends. Each agent has three intervals separated by ai and ri, the smallest (lower than

ai) where the agent can veto the candidate, the largest (higher than ri) where the agent

recommends and the candidate is hired as long as the other agent does not veto, and the

one in the middle where the candidate is hired only when the other agent recommends.

4.1. Pareto Optimal Mechanisms. In this subsection, I define Pareto optimal mecha-

nisms as the ones that are restricted Pareto optimal within the set of quasi-deterministic

incentive-compatible mechanisms. I briefly explain why if a stage mechanism is not ternary

after some history, then it is Pareto dominated by one that is ternary after the same history.

Definition 6. For incentive-compatible mechanisms Q and Q̃, the mechanism Q Pareto

dominates Q̃ after history vt�1 if

wi,t

�
Q; vt�1

�
¥ wi,t

�
Q̃; vt�1

	
for each i P t1, 2u ,

with strict inequality for at least one agent.

An incentive-compatible mechanism, Q, is Pareto optimal after history vt�1, if it is not

Pareto dominated by any other incentive compatible mechanism, Q̃, after the same history

vt�1.

Lemma 3. If a stage mechanism is Pareto optimal after some history, then it is payoff-

equivalent to a randomization among ternary stage mechanisms after the same history.

For an arbitrary incentive-compatible stage mechanism like the one in the diagram on the

left-hand side of Figure 8, I define ai and ri as follows:

ai � sup
vi,t

tvi,t : q pvi,t, v�i,tq � 0 for all v�i,t P V�iu , (2)

If agent i observes a value lower than ai, the candidate will not be hired, regardless of

what value the other agent reports.

ri � lim
εÑ0�

Ri pa�i � εq , (3)
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v1,t

v2,t

v v̄
v

v̄
q � 1

q � 0

a1

r2

r1

a2

v1,t

v2,t

v v̄
v

v̄

p�,�q

pr1,�q

pa1,�q

p�, r2q

pr1, r2q

p�, a2q

q � 1

a1

r2

r1

a2

Figure 8. An arbitrary mechanism (left) and an ternary mechanism that
Pareto dominates it (right)

If agent i observes a value higher than ri, the candidate will be hired as long as the other

agent reports a value higher than a�i. Recall that Ri is the threshold function defined in

Equation 1.

In the case in which the acceptance region is closed,

ri � Ri pa�iq   8. (4)

I call ai the approval threshold and ri the recommendation threshold for an agent i. When

agent i observes a value lower than ai, the candidate will never be hired for any value the

other agent reports, meaning agent i vetoes hiring. When agent i observes a value higher

than ri, the candidate will be hired as long as the other agent does not veto, meaning agent i

recommends hiring. When both agents approve but none recommends, the stage mechanism

can choose an arbitrary hiring rule such as the one in the left-hand-side diagram in Figure

4.

I compare the original stage mechanism in the diagram on the left-hand side of Figure 8

with one in which the candidate is never hired in the region ra1, r1s � ra2, r2s on the right-

hand side of Figure 8. The latter stage mechanism is ternary. In the ternary mechanism,
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when v2,t is between a2 and r2, agent 1 gets constant continuation value a1 if the candidate

is not hired, whereas in the original mechanism, agent 1 gets continuation values that are

lower than or equal to a1 whenever she has a value lower than a1. When v2,t is lower than

a2 or higher than r2, the ternary mechanism yields the same expected payoff for agent 1 by

construction.

4.2. Non-Pareto Optimal Mechanisms. The boundary of the set of continuation values

that correspond to some incentive-compatible mechanism consists of Pareto optimal mech-

anisms and the ones that are the worst for one agent fixing the payoff of the other agent.

In this subsection, I explain why the part of the boundary that is not Pareto optimal is

made up of ternary mechanisms and conclude that every incentive-compatible mechanism is

payoff-equivalent to some randomization among ternary mechanisms.

For an incentive-compatible mechanism, Q, it is on the non-Pareto optimal boundary

after history vt�1, if for some i P t1, 2u, there does not exist another incentive-compatible

mechanism, Q̃, with the property that

wi,t

�
Q̃; vt�1

	
� wi,t

�
Q; vt�1

�
and,

w�i,t

�
Q̃; vt�1

	
  w�i,t

�
Q; vt�1

�
.

The shaded region in Figure 9 represents a set of continuation values that are achievable

by some incentive-compatible mechanisms. The Pareto optimal boundary is highlighted, and

the remaining boundary is the non-Pareto optimal boundary.

Lemma 4. If the grand mechanism is on the non-Pareto optimal boundary after some his-

tory, then the stage mechanism after that history is payoff-equivalent to a randomization

among binary stage mechanisms after the same history.

I show that for an arbitrary stage mechanism like the one shown in Figure 8, a binary

mechanism such as the one depicted in the left-hand-side diagram in Figure 10, with carefully

constructed continuation value pairs in each rectangular region, results in a larger payoff for

one agent but a smaller one for the other agent. Intuitively, the stage mechanism in the
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v1,t

v2,t

v v̄
v

v̄
Pareto optimal

non-Pareto

non-Pareto

Figure 9. Boundary of a set of continuation values that corresponds to some
incentive-compatible mechanism

v1,t

v2,t

v v̄
v

v̄

p�,�q

p�,�q

pa1,�q

p�, r2q p�, r2q

p�, r2q

q � 1

a1

r2

v1,t

v2,t

v v̄
v

v̄

p�,�q

pa1,�q

pa1,�q

p�, a2q p�, a2q

q � 1

a1

a2

Figure 10. A binary mechanism better for 1 and worse for 2 (left) and a
binary mechanism worse for both (right)

diagram is close to the dictator mechanism for agent 1, so it leads to a payoff that is higher

for agent 1 and lower for agent 2. A ternary mechanism depicted in the left-hand side

diagram in Figure 10 results in a smaller payoff for both agents. As explained at the end of

the previous subsection, when both agents approve, never hiring the candidate is better for
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both agents than sometimes hire and sometimes not. For the same reason, always hiring is

worse for both agents.

Theorem 1. For every quasi-deterministic incentive-compatible mechanism, Q, there is a

mechanism Q̃ that satisfies,

(1) Every stage mechanism of Q̃ is ternary, and

(2) Q is payoff-equivalent to Q̃.

The result follows directly from Lemma 3 and Lemma 4, since the best and worst payoff

for an agent are randomizations between ternary stage mechanisms, and this result applies to

every agent and the stage mechanism after every history. Theorem 1 implies that a principal

can use only ternary mechanisms to obtain every implementable payoff for the agents.

5. Discussion

In this section, I discuss possible extensions of the model.

The assumptions on the distributions over time are imposed for simpler presentation in

the main text and the proofs, and they can easily be relaxed without significantly changing

the proofs. In particular, the independence assumption is never used in the proofs due to the

simplified definition of implementability used in the paper. However, a more complex defi-

nition of dynamic ex-post incentive compatibility should be used in the case with correlated

values over time.

The definition of binary stage mechanisms can easily be extended to problems with more

than two agents. These binary stage mechanisms remain the only incentive-compatible ones

in the static case and in the last period for problems with N ¡ 2 agents. The proofs of

Lemma 1 and Corollary 1 applies directly to the general N agent problems. The definition

of ternary stage mechanisms extend to problems with more than two agents. Lemma 3 and

Lemma 4 apply also to the general agents problems, but since the proof requires additional

notations that are complicated and do not provide additional insights, it is therefore not

presented. However, the main result, Theorem 1, does not follow from Lemma 3 and Lemma

4, as in the two-agent case. This is because the mechanisms from Lemma 4 do not cover the
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entire non-Pareto boundary in N dimensions. Lemma 4 implies only that fixing the payoff

of one agent makes it possible to decrease the payoffs of all other agents at the same time. I

conjecture that Theorem 1 holds for N agent problems but that a different approach to the

proof of Lemma 4 is required.

Another restrictive assumption is the requirement to use only quasi-deterministic mech-

anisms. A decomposability result similar to that provided by Pycia and Ünver (2015)

is required to show that any random mechanism can first be decomposed into multiple

quasi-deterministic mechanisms and then constructed through further randomization among

ternary mechanisms. Decomposability is not obvious in this model for even the simplest ran-

dom mechanisms; therefore, I restrict attention to quasi-deterministic mechanisms without

full justification.

It is possible to characterize the Pareto frontier in very simple examples. For example,

if the valuations are independently uniformly distributed on [-1, 1], the Pareto frontier in

the first period can be described by the line segment connecting the payoffs from the dic-

tator mechanisms where one agent is the always the dictator in all periods. For two period

problems, it is also possible to find the Pareto frontier numerically, but it is very difficult in

general to provide a characterization of the Pareto frontier. As a result, it is also difficult

to find the optimal dynamic mechanism given an objective function. They are interesting

questions that I am unable to answer at the moment and I will leave them to potential future

research.

6. Proofs (for the Lemmas in Section 3)

In this section, I start by stating the monotonicity condition that is necessary but not

sufficient for implementability. Then I provide the proof of Lemma 2, and I use the result

to prove Lemma 1.

Lemma 5. If a grand mechanism, Q, is incentive compatible, then after every history

vt�1, q pvt|v
t�1q is weakly increasing in vi,t for each agent i.
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Proof of Lemma 5: Let vt and ṽt be two histories that are the same except for the value for

agent i in period t, vi,t and ṽi,t, respectively, such that vi,t ¡ ṽi,t.

Ex post implementability implies, for a stage mechanism q p�q � q�|vt�1 of Q,

q pvtq vi,t � p1 � q pvtqqwi,t

�
Q; vt

�
¥ q pṽtq vi,t � p1 � q pṽtqqwi,t

�
Q; ṽt

�
and ,

q pvtq ṽi,t � p1 � q pvtqqwi,t

�
Q; vt

�
¤ q pṽtq ṽi,t � p1 � q pṽtqqwi,t

�
Q; ṽt

�
.

Taking the difference between the above inequalities gives the result.

pq pvtq � q pṽtqq � pvi,t � ṽi,tq ¥ 0

q pvtq � q pṽtq ¥ 0

Since vt and ṽt only differ in the component vi,t ¡ ṽi,t, q is monotonic in the component vi,t

for every i and every t. �

Proof of Lemma 2: Fix a grand mechanism Q and its stage mechanism after the history

vt�1, q p�q � q p�|vt�1q, recall the definition of the threshold function in Equation 1, Ri pv�i,tq �

inf tvi,t : q pvtq � 1u, with the convention that inf H � 8.

I first prove that the conditions (monotonicity on q and threshold condition on wt�1) are

necessary. Assume Q is a quasi-deterministic incentive compatible mechanism.

By Lemma 5, since q is monotonic in vi,t, and,

q pvi,t, v�i,tq �

$&
% 0 if vi,t   Ri pv�i,tq

1 if vi,t ¡ Ri pv�i,tq
.

The continuation value for agent i for fixed v�i,t, wi,t�1 pQ; vt�1, pvi,t, v�i,tqq, must be constant

for all values vi,t in the rejection region tvt : q pvtq � 0u. If not, the agent could always find

it optimal to report the valuation with the largest possible continuation value. From now

on, fix v�i,t and let wi,t�1 pQ; vt�1, pvi,t, v�i,tqq � c be the constant continuation value.
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For an agent observing vi,t   R pv�i,tq, incentive compatibility implies reporting vi,t is

preferred to reporting another v̂i,t ¡ Ri pv�i,tq to get the allocation q � 1, meaning,

c ¥ vi,t.

This is true for every vi,t   R pv�i,tq,

c ¥ Ri pv�i,tq .

For an agent observing vi,t ¡ Ri pv�i,tq, incentive compatibility implies reporting vi,t is pre-

ferred to reporting another v̂i,t   Ri pv�i,tq to get the allocation q � 0, meaning,

c ¤ vi,t.

This is true for every vi,t ¡ R pv�i,tq,

c ¤ Ri pv�i,tq .

Therefore,

c � Ri pv�i,tq ,

and,

wi,t�1

�
Q; vt�1, pvi,t, v�i,tq

�
� Ri pv�i,tq for each vi,t such that q pvi,t, v�i,tq � 0.

Now I prove that the monotonicity and threshold conditions are sufficient. Fix v�i,t and

assume q is a stage mechanism that satisfy these conditions.

For an agent i with vi,t   R pv�i,tq, reporting v̂i,t results in payoff,

wi,t

�
Q; vt�1

�
�

$'''&
'''%

Ri pv�i,tq if v̂i,t � vi,t

Ri pv�i,tq if v̂i,t � vi,t, v̂i,t ¤ R pv�i,tq

vi,t if v̂i,t ¡ R pv�i,tq

.
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Since vi,t   Ri pv�i,tq, it is optimal to report truthfully.

For an agent i with vi,t ¡ R pv�i,tq, reporting v̂i,t results in payoff,

wi,t

�
Q; vt�1

�
�

$'''&
'''%

vi,t if v̂i,t � vi,t

vi,t if v̂i,t � vi,t, v̂i,t ¡ R pv�i,tq

Ri pv�i,tq if v̂i,t ¤ R pv�i,tq

.

Since vi,t ¡ Ri pv�i,tq, it is optimal to report truthfully.

Therefore, truthful reports are optimal, q is incentive compatible. �

Proof of Lemma 1: Fix a grand mechanism, Q. Since for any history vT P VT,

wi,T�1

�
Q; vT

�
� v�i ,

by Lemma 2, for any v�i,T , either q
�
vi,T , v�i,T |v

T�1
�

is constant in vi,T or,

Ri pv�i,T q � v�i .

By Definition 3, these stage mechanisms are binary with outside option v�i for agent i. �

7. Proofs (for the Lemmas and Propositions in Section 4)

In this section, I start by defining some shorthand notations for the proofs in this section

and some preliminary observations that simplify the shapes and continuation values of an

incentive compatible mechanism. Then, I prove Lemma 3 and Lemma 4. Theorem 1 follows

directly from Lemma 3 and Lemma 4.

From now on, I am going to fix the grand quasi-deterministic incentive compatible mech-

anism Q, period t and history vt�1. To simplify the subsequent notation, I write,

q pvtq � q
�
vt|v

t�1
�
.

I also write,

wt�1 pvtq � wt�1

�
Q; vt�1, vt

�
,
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and,

wt � wt

�
Q; vt�1

�
.

I define the following constants and sets, I assume the acceptance region tvt : q pvtq � 1u

is closed for these definitions.

(1) Recall from Equation 2 that the approval threshold , ai, is the threshold below which

the agent i has veto power: if vi,t   ai, the candidate is vetoed by i and will never

be hired for any value of v�i,t,

ai � sup
vi,t

tvi,t : q pvi,t, v�i,tq � 0 for all v�i,t P rv, v̄su .

(2) The non-threshold region for agent i, is the set of v�i,t such that the candidate is

never hired for any value of vi,t,

tv�i,t : q pṽi,t, v�i,tq � 0 for all ṽi,t P rv, v̄su � rv, a�iq .

The average non-threshold continuation value , ci, is the expected continuation value

within the non-threshold region for agent i,

ci � E rwi,t�1 pvi,t, v�i,tq |v�i,t   ais .

(3) The definition for the recommendation threshold , ri, is simplified from Equation 4

due to the assumption that the acceptance region is closed,

ri � Ri pa�iq .

One useful relation due to the definition of these constants is,

ai ¤ Rv�i,t
¤ ri for all v�i,t ¥ a�i. (5)

Then, I state an corollary to Lemma 2 that makes computation easier in all the following

proofs.
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Corollary 2. Fix a history vt�1 and a stage mechanism of a quasi-deterministic incentive

compatible Q after this history, q p�q � q p�|vt�1q,

E rmax tvi,t, Ri pv�i,tqu |v�i,t ¥ a�is � P tv�i,t ¥ a�iu � ci � P tv�i,t   a�iu .

Proof of Corollary 2: It follows directly from Lemma 2. �

In the course of this section, I will construct alternative stage mechanisms with new contin-

uation values. I say a continuation value is incentive compatible if they can be implemented

in an incentive compatible quasi-deterministic grand mechanisms.

As an example, I show the following Compactness Lemma that ensures that the acceptance

region is closed.

Lemma 6. There exists an incentive compatible stage mechanism q̃, with incentive compat-

ible continuation values, that is payoff equivalent to q, such that,

tvt : q̃ pvtq � 1u is closed .

Recall that payoff equivalence in this section means w̃t � wt where w̃t is the continuation

value of mechanism that has q̃ after history vt�1 in place of q.

Proof. Define q̃ such that the set tvt : q̃ pvtq � 1u is the closure of the set tvt : q pvtq � 1u.

Payoff equivalence is due to continuity and full support property of the value distributions.

�

The only issue is how to define the continuation payoffs for player i when the other player

says ai. But use the continuity and just take the limit of continuation values when v�i ¡ ai.

Also, I show the following Flattening Lemma that ensures that continuation values in the

non-threshold region is constant.

Lemma 7. There exists an incentive compatible stage mechanism q̃, with incentive compat-

ible continuation values, that is payoff equivalent to q, such that,

w̃t�1 pvi,t, v�i,tq � ci for all v�i,t   a�i.
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Proof of Lemma 7: Let q̃ be the stage mechanism from replacing the continuation value of

agent i in q in the non-threshold region v�i,t   a�i by ci.

I divide the proof into three main parts.

(1) q̃ is incentive compatible.

(2) q̃ payoff equivalent to q.

Part (1) There are two types of new continuation values that is different from the ones

used in q.

(1) pci, R�i pvi,tqq from the region vi,t ¥ ai and v�i,t   a�i,

(2) pci, c�iq from the region vi,t   ai and v�i,t   a�i.

Fix ṽi,t ¥ ai, R�i pṽi,tq is finite due to the definition of ai.

pci, R�i pṽi,tqq � pE rwi,t�1 pvi,t, v�i,tq |v�i,t   a�is , R�i pṽi,tqq

� pE rE rwi,t�1 pvi,t, v�i,tq |v�i,t   a�is , w�i,t�1 pṽi,t, v�i,tqq

� E rwt�1 pṽi,t, v�i,tq |v�i,t   a�is .

The second equality is due to Lemma 2 which states that wi,t�1 pvi,t, v�i,tq is constant in vi,t

in the non-threshold region rv, a�iq.

Similarly,

pci, c�iq � pE rwi,t�1 pvi,t, v�i,tq |v�i,t   a�is ,E rw�i,t�1 pvi,t, v�i,tq |vi,t   a�isq

� E rwt�1 pvi,t, v�i,tq |vi,t   a�i, v�i,t   a�is .

The second equality is due to Lemma 2 which states that wi,t�1 pvi,t, v�i,tq is constant in vi,t

in the non-threshold region rv, a�iq.

Therefore, pci, R�i pvi,tqq and pci, c�iq are the expected value other continuation value pairs

so they are incentive compatible too. Since q̃ is the same as q, so incentive compatible of q̃

follows from the incentive compatibility of q.
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Part (2) Note that,

c̃i � E rw̃i,t�1 pvi,t, v�i,tq |v�i,t   a�is

� E rci|v�i,t   a�is

� ci.

I check q̃ is payoff equivalent to q using Corollary 2,

w̃i,t � E
�
max

!
vi,t, R̃i pv�i,tq

)
|v�i,t ¥ a�i

�
� P tv�i,t ¥ a�iu � c̃i � P tv�i,t   a�iu

� E rmax tvi,t, Ri pv�i,tqu |v�i,t ¥ a�is � P tv�i,tv�i,t ¥ a�iu � ci � P tv�i,t   a�iu

� wi,t.

�

v1,t

v2,t

v v̄
v

v̄

pc1, c2q

p�, c2q

pa1, c2q

pc1,�q pc1, a2q

a1

r2

r1

a2

v1,t

v2,t

v v̄
v

v̄

pc1, c2q

pr1, c2q

pa1, c2q

pc1, r2q

pr1, r2q

pc1, a2q

q � 1

a1

r2

r1

a2

Figure 11. Mechanism q̃

Lemma 8. Ternary stage mechanisms with continuation values described in diagram on the

right of Figure 11 are incentive compatible as long as the continuation values are incentive

compatible.

Proof. It follows directly from Lemma 2. �
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In the following proofs, by Lemma 6 and Lemma 7, without loss of generality, assume the

acceptance region of q is closed and continuation value for each agent i in its non-threshold

region v�i,t P rv, a�iq is constant at ci. Let the continuation values and the shape of the

acceptance region of q be ones as in .

Proof of Lemma 3: Consider a ternary stage mechanism, q̃, with the thresholds ai, ri with

continuation values specified in .

I divide the proof into three main parts.

(1) q̃ is incentive compatible.

(2) q̃ Pareto dominates q.

Part (1) I only need to show that the continuation values are incentive compatible, the

rest follows from Lemma 8. There are three types of new continuation values that is different

from the ones used in q.

(1) pri, r�iq in the region aj ¤ vj,t   rj for both j P t1, 2u,

(2) pri, c�iq in the region vi,t   ai and a�i ¤ v�i,t   r�i.

pri, r�iq � pRi pa�iq , R�i paiqq

� wt�1 pai, a�iq ,

and fix ai ¤ vi,t   ri,

pri, c�iq � pRi pa�iq , c�iq

� wt�1 pvi,t, a�iq ,

are both incentive compatible continuation values due to implementability of q.
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Part (2) I use Corollary 2 to compare q̃ and q.

w̃i,t � wi,t

� E
�
max

!
vi,t, R̃i,t pv�i,tq

)
� max tvi,t, Ri,t pv�i,tqu |v�i,t ¥ a�i

�
� P tv�i,t ¥ a�iu

� pc̃i � ciq � P tv�i,t   a�iu

� E rmax tvi,t, riu � max tvi,t, Ri,t pv�i,tqu |v�i,t ¥ a�is � P tv�i,t ¥ a�iu

¥ E rmax tvi,t, riu � max tvi,t, riu |v�i,t ¥ a�is � P tv�i,t ¥ a�iu

� 0.

The inequality is due to the observation Equation 5.

Therefore, q is Pareto dominated by q̃. �

v1,t

v2,t

v v̄
v

v̄

pc1, c2q

pr1, c2q

pc1, a2q pc1, a2q

pr1, a2q

q � 1

a1 r1

a2

v1,t

v2,t

v v̄
v

v̄

pc1, c2q

pa1, c2q

pc1, a2q

q � 1

a1

a2

Figure 12. Mechanism qmin

Proof of Lemma 4: Consider two other stage mechanisms qmin and qmax in place of q after

history vt�1, where qmax is the binary mechanism with thresholds pai, r�iq and qmin is the

binary mechanism with thresholds pai, a�iq, and with continuation values specified in Figure
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12. I add superscript min and max to denote the modified recommendation thresholds,

rmin
i � ai,

rmin
�i � r�i,

and,

rmax
i � ai,

rmax
�i � a�i.

with continuation values specified in .

I divide the proof into two parts.

(1) qmin and qmax are incentive compatible.

(2) A randomization between Qmin and Qmax results in the same continuation value for

i and is a smaller continuation value for �i.

Part (1) The continuation values are incentive compatible for similar reasons as the con-

tinuation values of q̃ are incentive compatible in the proof of Lemma 3. The rest follows

from Lemma 8.

Part (2) There are three things to show.

(1) qmin is worse than q for every agent,

(2) qmax is better than q for i,

(3) qmax is worse then q for �i.

I use Corollary 2 for all three comparisons.
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Comparison (1) : For every agent j P t1, 2u,

wj,t � wmin
j,t

� E
�
max tvj,t, Rj,t pv�j,tqu � max

 
vj,t, R

min
j,t pv�j,tq

(
|v�j,t ¥ a�j

�
� P tv�j,t ¥ a�ju

�
�
cmin
j � cj

�
� P tv�j,t   a�ju

� E rmax tvj,t, Rj,t pv�j,tqu � max tvj,t, aju |v�j,t ¥ a�js � P tv�j,t ¥ a�ju

¥ E rmax tvj,t, aju � max tvj,t, aju v�j,t ¥ a�js � P tv�j,t ¥ a�ju

� 0.

The inequality is due to the observation Equation 5.

Comparison (2) : For agent i,

wmax
i,t � wi,t

� E
�
max

 
vi,t, R

max
i,t pv�i,tq

(
� max tvi,t, Ri,t pv�i,tqu |v�i,t ¥ a�i

�
� P tv�i,t ¥ a�iu

� pcmax
i � ciq � P tv�i,t   a�iu

� E rmax tvi,t, riu � max tvi,t, Ri,t pv�i,tqu |v�i,t ¥ a�is � P tv�i,t ¥ a�iu

¥ E rmax tvi,t, riu � max tvi,t, riu |v�i,t ¥ a�is � P tv�i,t ¥ a�iu

� 0.

The inequality is due to the observation Equation 5.
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Comparison (3) : For agent �i,

w�i,t � wmax�i,t

� E rmax tv�i,t, R�i,t pvi,tqu � max tv�i,t, R
max�i,t pvi,tqu |vi,t ¥ ais � P tvi,t ¥ aiu

�
�
cmax
j � cj

�
� P tvi,t   aiu

� E rmax tvj,t, Rj,t pv�j,tqu � aj|ai ¤ vi,t   ris � P tai ¤ vi,t   riu

¥ E rmax tvj,t, aju � aj|ai ¤ vi,t   ris � P tai ¤ vi,t   riu

¥ 0.

The first inequality is due to the observation Equation 5. Note that this abuses Corollary 2

to since the non-threshold regions are not the same.

Therefore, there is a randomization between qmin and qmax such that the continuation

value for i is the same and lower for agent �i. �

Proof of Theorem 1: Since binary mechanisms in Lemma 4 are ternary and the set �i is a

singleton, the result follows from Lemma 4 and Lemma 3. �

References

Albrecht, James, Axel Anderson, and Susan Vroman (2010), “Search by committee.” Journal

of Economic Theory, 145, 1386–1407.

Athey, Susan and Ilya Segal (2013), “An efficient dynamic mechanism.” Econometrica, 81,

2463–2485.

Bergemann, Dirk and Stephen Morris (2005), “Robust mechanism design.” Econometrica,

73, 1771–1813.
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