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Thesis Statement

There are vulnerabilities in multi-agent systems and attackers
can influence the behavior of multi-agent reinforcement
learners through data or environment poisoning.
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List of Projects

Completed:

my1 Game Redesign: Training time, reward poisoning, online
victims.

my2 Nash Attack: Training time, reward poisoning, two offline
victims.

my3 DSE Attack: Training time, reward poisoning, multiple offline
victims.

Future work:

my4 MARL Test Attack: Test time, state or action manipulation,
pre-trained victims.

my5 Equilibrium Defense: Training or test time, attack-aware
victims.

my6 Multi Attacker: Training or test time, multiple attackers.
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Adversarial RL Literature

Victims1 Zero-sum General-sum

r10 � 21s r23s r25, 26s

r1 � 9s r22s r24s

[my1] Game redesign
[my3] DSE attack[my2] Nash attack

[my6] Equilibrium defense

[my4] MARL Test attack
[my5] Multi attackerTest

Training

MDP Markov Game
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[my1] Game Redesign

my1 Joint work p� 15% contribution) with Yuzhe Ma (main
author), and Jerry Zhu.

Victim setting:

1 The victims are no-regret online learners with O pTαq regret,
e.g. EXP3.P.

2 The victims participate in an n-player general-sum bandit
game with original reward ro paq P r�1, 1sn for action profile
a � pa1, a2, ..., anq.
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Attacker Setting

Attacker setting:

1 The attacker wants the victims to take a target

(deterministic) policy π: �
�
π:1, π

:
2, ..., π

:
n

	
as often as

possible, i.e. maximize
Ţ

t�1

1pat�π:q.

2 The attacker can modify the rewards that the victims see
from ro paq to r : paq.

3 The attacker wants sublinear design cost
Ţ

t�1

���ro patq � r :t patq
���
p
.
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Interior Design Example

Suppose π: � p1, 1q, the attacker can redesign the game ro to
r :,

ro �

�
����

p0, 0q
�
�1, 1

	 �
1 ,�1

	
�

1 ,�1
	

p0, 0q
�
�1, 1

	
�
�1, 1

	 �
1 ,�1

	
p0, 0q

�
���� ,

r :1 � r :2 � ... �

�
����

�
0 , 0

	 �
0.1 ,�0.1

	 �
0.1 ,�0.1

	
�
�0.1, 0.1

	
p0, 0q p0, 0q�

�0.1, 0.1
	

p0, 0q p0, 0q

�
���� .
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Interior Design Algorithm

Given ro paq P r�1, 1s, first consider the interior case when
ro
�
π:
� ¡ �1.

Assumption: ro
�
π:
� ¥ �1 � ρ, for some ρ ¡ 0.

Attack: r :i ,t paq �

$'&
'%
roi
�
π:
��

�
1 � d patq

n



ρ if ai ,t � π:i

roi
�
π:
�� d patq

n
ρ if ai ,t � π:i

,

where d patq �
ņ

i�1

1!
ai,t�π

:
i

).
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Interior Design Result

Theorem

Using the interior design, π: is used T � O pnTαq times while
incurring design cost O

�
n1�1{pTα

�
.

For example, EXP3.P with L1 cost can achieve π: being used

T � O
�
n
?
T
	

times with cost O
�
n2
?
T
	

.
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Interior Design Proof Sketch

Under this attack, we have,

r :i ,t paq �

$'&
'%
roi
�
π:
��

�
1 � d patq

n



ρ if ai ,t � π:i

roi
�
π:
�� d patq

n
ρ if ai ,t � π:i

.

1 π: is strictly dominant:

r :i ,t

�
π:i ,t , a�i ,t

	
� r :i ,t pai ,t , a�i ,tq �

�
1 � 1

n



ρ,@ ai ,t � π:i ,t .

2 π: rewards remain unchanged: r :i ,t
�
π:
� � roi

�
π:
�
.

No-regret learners will use the optimal action profile π: in all
but O pTαq rounds while incurring O pTαq design cost.
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Boundary Design Example

When ro
�
π:
� � �1, it is impossible to decrease other entries

below �1: another design is needed.

Suppose again π: � p1, 1q, then,

ro �

�
����
p�1,�1q

�
�1, 1

	 �
1 ,�1

	
�

1 ,�1
	

p�1,�1q
�
�1, 1

	
�
�1, 1

	 �
1 ,�1

	
p�1,�1q

�
���� ,

r :1 �

�
����

�
�0.8 , �0.8

	 �
�0.7 ,�0.9

	 �
�0.7 ,�0.9

	
�
�0.9, �0.7

	
p�1,�1q p�1,�1q�

�0.9, �0.7
	

p�1,�1q p�1,�1q

�
���� ,
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Boundary Design Example Limit

r :1 �

�
����

�
�0.8 , �0.8

	 �
�0.7 ,�0.9

	 �
�0.7 ,�0.9

	
�
�0.9, �0.7

	
p�1,�1q p�1,�1q�

�0.9, �0.7
	

p�1,�1q p�1,�1q

�
���� ,

r :2 �

�
����

�
�0.9 , �0.9

	 �
�0.85 ,�0.95

	 �
�0.85 ,�0.95

	
�
�0.95, �0.85

	
p�1,�1q p�1,�1q�

�0.95, �0.85
	

p�1,�1q p�1,�1q

�
���� ,

lim
tÑ8

r :t �
�
�p�1,�1q p�1,�1q p�1,�1q
p�1,�1q p�1,�1q p�1,�1q
p�1,�1q p�1,�1q p�1,�1q

�
� .
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Boundary Design Algorithm

Assumption: ro
�
π:
� � �1.

Attack: r :i ,t paq � wtr
:
i , interior paq � p1 � wtq ro

�
π:
�
, where

wt � tα�ε�1, for some ε P p0, 1 � αs.
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Boundary Design Result

Theorem

Using the boundary deisng with ε � 1 � α

2
, π: is used

T � O
�
nT p1�αq{2

�
times while incurring design cost

O
�
n1{p p1 � nqT p1�αq{2

�
.
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Boundary Design Proof Sketch

Under this attack, we have,

r :i ,t paq � wtr
:
i , interior paq � p1 � wtq ro

�
π:
�
, where wt � tα�ε�1.

1 π: is strictly dominant:

r :i ,t

�
π:i ,t , a�i ,t

	
� r :i ,t pai ,t , a�i ,tq �

�
1 � 1

n



ρwt ,@ ai ,t � π:i ,t .

2 π: rewards are almost unchanged:���r :i ,t �π:�� roi
�
π:
����

p
¤ 2bn1{pwt .

No-regret learners will use the optimal action profile π: in all
but O

�
T p1�αq{2

�
rounds while incurring O

�
T p1�αq{2

�
design

cost.
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[my2] Nash Attack

In [my1], the attacker modifies the victims’ rewards during
online learning.

In [my2], and [my3], the attacker modifies the rewards in an
offline data set.



17/43

Introduction Game Redesign Nash Attack DSE Attack Test Attack Equilibrium Multi Attacker Thesis

Victim Setting

my2 Joint work p� 75% contribution) with Jeremy McMahan,
Jerry Zhu, Qiaomin Xie. (Thanks: Yudong Chen)

Victim setting:

1 The victims are uncertainty-aware offline learners that use
additive bonus terms β when estimating the Q function,
i.e.Q � R̂ � β � EP̂ rV 1s.

2 The victims learn a two-player zero-sum Markov game from a

training set

"��
s
pkq
t , a

pkq
t , r

pkq
t

	T
t�1


*K

k�1

, with r
pkq
t P r0, 1s.
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Attacker Setting

Attacker setting:

1 The attacker wants the victims to learn a target
(deterministic) policy π: as the unique Markov perfect (Nash)
equilibrium.

2 The attacker can modify the rewards in the training set from
ro to r :.

3 The attacker minimizes the reward modification cost��r : � ro
�� , e.g.

Ķ

k�1

Ţ

t�1

���r :,pkqt � r
o,pkq
t

���
1
.

4 The attacker does not know R̂ and P̂, but assumes���R̂ � RpMLEq
���   ρpRq and

���P̂ � PpMLEq
���
1
  ρpPq.
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iNash Formulation

The attack can be formulated as

min
r:

��r : � ro
��

s.t.Q̂π:
�
r :; ρpRq, ρpPq

	
� iNash

�
π:
�
,

where,

1 Q̂π prq is the set of plausible Q functions computed based on
r evaluated on π,

2 iNash pπq is the inverse Nash polytope of Q functions such
that π is the strict Markov perfect (Nash) equilibrium.
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iNash Diagram

Space of Data Sets

ror :

!
r : Q̂π: prq � iNash

�
π:
�)

Space of Q Functions

Q̂π: proqQ̂π:
�
r :
�

iNash
�
π:
�
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Feasibility

Theorem

The attack is feasible if ρ
pRq
t ps, aq � |βt ps, aq|   1

4T
,@ t, s, and

actions a such that a1 � π:1,t psq or a2 � π:2,t psq.

For example, if ρpRq � 0 and β � ca
Nt ps, aq

, then the

condition is a data coverage condition, Nt ps, aq ¡ 16cT 2 for
actions profiles in the same row or column as π: in the stage
game matrices.
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Feasible Example

Suppose π: � p1, 1q in a stage game, then the following
attack is feasible under the previous feasibility condition,

a1za2 1 2 3 4

1 0.5 1 1 1

2 0 - - -

3 0 - - -

4 0 - - -

Unspecified cells’ corresponding rewards do not need to be
poisoned.
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Feasibility Proof Sketch

The condition ρ
pRq
t ps, aq � |βt ps, aq|   1{ p4T q implies that

the cumulated confidence interval width for R and P in the
future periods is bounded by 1{4.

In period t, state s, for every a1 � π:1 and a2 � π:2 , the Q
values have the following relationship.

0 1{4 1{2 3{4 1

Q:
�
a1, π

:
2

	
Q:
�
π:
�

Q:
�
π:1, a2

	

Therefore, π:t psq is the strict, thus unique, Nash equilibrium
in every stage game pt, sq.
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Linear Program Formulation

The attacker’s problem is given by,

min
r:

Ķ

k�1

Ţ

t�1

���r :,pkqt � r
o,pkq
t

���
1

s.t. for every t, s, and Q:
t P Q̂π:

�
r :
�
,

Q:
t

�
s, π:t psq

	
¡ Q:

t

�
s,
�
a1, π

:
t,2 psq

		
,@ a1 � π:t,1 psq ,

Q:
t

�
s, π:t psq

	
  Q:

t

�
s,
�
π:t,1 psq , a2

		
,@ a2 � π:t,2 psq .

Since Q̂π prq are polytopes, this problem can be formulated as
a linear program and solved efficiently.
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[my3] DSE Attack

my3 Joint work p� 50% contribution) with Jeremy McMahan,
Jerry Zhu, Qiaomin Xie. (Thanks: Yudong Chen)

The settings are similar to the Nash Attack [my2], except
there are n victims learning general-sum Markov games.

iDSE (Markov perfect dominant strategy equilibrium) is used
in place of iNash: the feasibility conditions are similar, and the
attack can also be converted into a linear program.
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Future Work

[my4], [my5], [my6] are incomplete future work, and focus
mostly on modes of attack other than training time reward
poisoning.
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[my4] MARL Test Attack

The setting:

1 The attacker knows the victims’ pre-trained policy
π � pπ1, π2, ..., πnq.

2 The attacker wants to minimize some function of the victims’
rewards g ppr1, r2, ..., rnqq.

3 The attacker may poison the environment at test time, for
example, modify the perceived states from st to s:t.
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Motivation

Single-agent test time attacks have been studied, but they can
be extended to the multi-agent reinforcement learning setting.
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Attacker Goal

The attacker wants to minimize some social welfare
g ppr1, r2, ..., rnqq of the victims, for example,

1 Utilitarian: g prq �
ņ

i�1

ri pπq.

2 Rawlsian: g prq � min
i

ri pπq.
3 Other functions of rewards such as

g prq � max
i

ri pπq � min
i

ri pπq.
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Attacker Action

The attacker may modify one of the following during test
time,

1 Perceived state, common to all victims, i.e. change st Ñ s:t ,
but P pst�1|at , stq stays the same.

2 Perceived state, different to different victims, i.e. change

st Ñ
�
s:t,1, s

:
t,2, ..., s

:
t,n

	
, but P pst�1|at , stq stays the same.

3 True state, i.e. change st Ñ s:t , and

P pst�1|at , stq Ñ P
�
st�1|at , s:t

	
.

4 Victim action, i.e. change at Ñ a:t , and

P pst�1|at , stq Ñ P
�
st�1|a:t , st

	
.
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Roadmap to Solve [my4]

The original Markov game, given by its states, actions,
transitions, and rewards, say G � pS,A,P,Rq.
In the perceived common state attack, the attacker’s problem
can be formulated as a meta Markov decision process
M � pS 1,A1,P 1,R 1q, where,

1 The meta states S 1 � S.

2 The meta actions A1 � S.

3 The meta transitions P 1
t

�
pst�1, at�1q | pst , atq , s:t

	
�

Pt

�
st�1|s:t , at

	
πt�1 pat�1|st�1q.

4 The meta rewards R 1
t

�
pst , atq , s:t

	
� �g

�
rt

�
s:t , at

		
.
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Roadmap, Continued

The meta MDP M can be solved using any reinforcement
learning or planning algorithms.

There might be special algorithms to solve M more efficiently
since the meta action space might be large.

The setting where the attacker does not know G or π could be
studied.

Experiments could be implemented.
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[my5] Equilibrium Defense

The setting:

1 The attacker wants to minimize some social welfare
g ppr1, r2, ..., rnqq.

2 The victims want to maximize expected discounted individual
rewards ri .

3 The attacker and victims simultaneously select and commit to
a perceived state attack ν : S Ñ S and a policy
π � pπ1, π2, ..., πnq, with πi : S Ñ Ai .
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Motivation

In MARL Test Attack [my4] and most of the attack-defense
literature, either the victim has a fixed policy, or the attacker
has a fixed attack algorithm, and the other agent best
responds to the fixed action. Both models are not realistic
and equilibrium attack-defense should be studied instead.
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Roadmap to Solve [my5]

The problem can be formulated as a static game G � pA1,R 1q,
where,

1 The meta actions
A1 � pS Ñ S,S Ñ A1,S Ñ A2, ...,S Ñ Anq.

2 The meta rewards
R 1 pν, π1, π2, ..., πnq � p�g pV pπ pνqqq ,V pπ pνqqq, where

V pπ pνqq �
8̧

t�1

γtEP rR pst , π1 pν pstqq , ..., πn pν pstqqqs.
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Roadmap, Continued

The meta game G can be solved using a Nash solver, e.g. a
linear program when the game is zero-sum.

There might be special classes of equilibria that are easier to
solve since the meta action space might be large.

The equilibrium policy π might correspond to some robust
policy in the RL literature.

Training time equilibrium attack defense could also be studied.
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[my6] Multi Attacker

The setting:

1 Multiple attackers j P rms, each attacks a subset of the
victims.

2 Each attacker wants to minimize a different social welfare
gj ppr1, r2, ..., rnqq.

3 Each attacker may modify the perceived state of the set of
victims it attacks.
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Motivation

In MARL Test Attack [my4] and most of the training or test
time attack literature, there is only one attacker. The problem
with multiple attackers with different objectives is an
interesting problem with many real-world applications.
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Roadmap to Solve [my6]

The original Markov game, given by its states, actions,
transitions, and rewards, say G � pS,A,P,Rq.
In the perceived state attack where each attacker attacks a
single victim, the attackers’ problem can be formulated as a
meta Markov game M � pS 1,A1,P 1,R 1q, where,

1 The meta states S 1 � S.

2 The meta actions A1 � Sn.

3 The meta transitions P 1
t

�
pst�1, at�1q | pst , atq , s:t

	
�

Pt

�
st�1|s:t , at

	
πt�1 pat�1|st�1q.

4 The meta rewards R 1
t

�
pst , atq , s:t

	
� �g

�
rt

�
s:t , at

		
.
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Roadmap, Continued

The meta Markov Game G can be solved using any
multi-agent reinforcement learning or planning algorithms.

There might be special algorithms to solve G more efficiently
since the meta action space might be large.

The setting where the attackers do not know G or π could be
studied.

Experiments could be implemented.

Training time attacks with multiple attackers could also be
studied.
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Thesis Expected Timeline

Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun

Milestone 1: Theoretical
Analysis

Milestone 2: Experiments

Milestone 3: Write-up

MARL Test

Attack
[my4]

Equilibrium

Defense
[my5]

Multi

Attacker
[my6]

Teaching
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Thank you!
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