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Abstract. I study a school choice problem where students have observable characteristics

that are correlated with their preferences. For example, one such characteristic may be the

location of a student’s home, which is correlated with preferences if students tend to prefer

nearby schools. I consider mechanisms that are envy-free, efficient, and treat students with

the same observable characteristics equally. I show that the welfare-maximizing mechanism

in this class is a modified probabilistic serial mechanism with capacities. These capacities

specify the maximum number of students with given characteristics that can be admitted

into each school.

1. Introduction

The literature on school choice studies the problem of how to allocate students into schools.

A typical problem includes students with different preferences, and possibly schools with

different preferences or priorities for students.

One approach to the school choice problem was introduced in Bogomolnaia and Moulin

(2001). They consider a mechanism design approach. Students report their preferences and

the mechanism allocates the students into the schools. A good mechanism satisfy certain

properties such as the following,

(1) Efficiency: the resulting allocation is not Pareto dominated by any other feasible

allocation.

(2) Envy-freeness: the resulting allocation for any individual student is not dominated

by the allocation for another student.

(3) Symmetry: the resulting allocation is the same for students with the same preferences.
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Bogomolnaia and Moulin (2001) introduce a mechanism called the simultaneous eating

mechanism that is characterized by property p1q. They also show that a special case of their

simultaneous eating mechanism, called the probabilistic serial mechanism, satisfies all three

properties p1q , p2q and p3q. Later, Liu and Pycia (2016) shows that for problems with full

support - meaning that for every possible permutation of the preference ordering over the

schools, a strictly positive proportion of students have that preference - a mechanism satisfies

p1q , p2q and p3q if and only if it is probabilistic serial.

The symmetry assumption made by Bogomolnaia and Moulin (2001) has an important

interpretation as fairness criterion: no two students are treated differently. It also has a

practical dimension: if the only information about students comes from their reports, only

the reports can be taken into account by the mechanism. However, the assumption is not

appropriate for many contexts. In many situations, categories of students can be observed

by the schooling authority. Examples include,

 The further the location of a student’s home to a school, the higher the transportation

cost and as a result, ceteris paribus, the less the student will prefer to go that school.

The school board may have additional data on the average amount of saving on

transportation costs for each student, and as a result have good estimate of the

cardinal welfare for every feasible allocation.

 Students with higher standardized test grades may be more likely to enjoy a school

with larger libraries, more labs and better teachers. The students may not be able

to evaluate the benefit from better libraries, but the school board is able to provide

a more accurate estimate of the difference in benefit to students with different test

scores.

 The more siblings a student has in a school, the higher the utility the student will

obtain when attending that school. In this case, two students with the same ordinal

preference ordering may have dramatically different cardinal utilities from attending

the schools. It is impossible to obtain from the students the cardinal utility gain

from having a sibling in the same school because there are no consistent units of
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measurement; however, the school board may be able to evaluate the gain relatively

consistently.

 Students with disabilities may benefit more from schools with more specialized facil-

ities, equipment and teachers with training for students with special needs. Similarly

to the previous examples, the school board has better information on the utility gain

for these students.

In the above situations, there are important reasons to treat different students differently.

For instance, the school authority may want to reduce the transportation costs and give the

priority to the students who live in the school’s neighborhood. Similarly, the priority to

schools that are accessible can be given to students with disabilities.

In this paper, I consider a version of the school choice problem where students that belong

to different well-defined groups can be treated differently. Formally, as in Bogomolnaia and

Moulin (2001), I take the mechanism design approach, and I consider stochastic allocations

and compare them through first-order stochastic dominance. I will make the assumption that

although the students have cardinal utilities, they can only report ordinal rankings, and as

a result, the mechanism is ordinal. For tractability, I also assume continuum of students of

mass 1.

I keep the efficiency assumption and replace envy-freeness and symmetry with a pair of

weaker assumptions that students with the same characteristic do not envy each other’s

allocations and they must be treated equally and call these assumptions within-group envy-

freeness and within-group symmetry. Consequently, I consider the class of mechanisms that

satisfy the following properties:

(1) Efficiency: the resulting allocation is not Pareto dominated by any other feasible

allocation

(2) Within-group envy-freeness: the resulting allocation for any individual student is not

dominated by the allocation for another student with the same characteristics .

(3) Within-group symmetry: the resulting allocation is the same for students with the

same characteristics with the same preferences.
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The main result is similar to the one in Liu and Pycia (2016) that the only mechanisms

that satisfy the above three properties are from a class of modified versions of the prob-

abilistic serial mechanisms from Bogomolnaia and Moulin (2001). These mechanisms are

probabilistic serial with school-specific subcapacities for each group of students with the

same characteristic. Each subcapacity specifies the maximum amount of students with a

particular characteristic that are allowed to be assigned to the school. In addition, given

data on the expected cardinal utilities from assigning students with a particular character-

istic to a specific school, I show that the cardinally efficient allocations can also be obtained

from the modified probabilistic serial mechanisms with subcapacities that can be chosen

according the solution to a convex programming problem.

Here, I briefly describe the algorithm as if the students are consuming portions of schools

continuously: for students in a specific group, schools start with sizes equal to their subca-

pacities and every student starts eating her favorite school at the same unit rate until some

schools are completely eaten. Then, students start to eat their favorite among the remaining

schools that are not eaten. The process ends at time 1, and the total amount of school a

student has eaten will represent the probability that she is allocated to school.

This paper is most closely related to the literature on ordinal mechanisms for large mar-

kets developed by Kojima and Manea (2010), and Che and Kojima (2010) and extended

by Liu and Pycia (2016). The proofs also use techniques from these papers. The litera-

ture attempts to find efficient, strategy-proof and symmetric mechanisms for large markets;

however, the focus of this paper deviates from the literature in that it studies problems in

which the students have observable characteristics that can provide additional information

for the designers. As a result, this paper partially addresses the loss of welfare due to the

restriction to ordinal mechanisms mentioned in Abdulkadiroğlu, Che, and Yasuda (2011) and

Pycia (2014) by proposing the use of estimated cardinal utilities (from students’ observable

characteristics) in addition to the elicited ordinal preference. The results are not directly

applicable to finite markets, but the algorithm in this paper can be applied to finite markets

and potentially improve welfare in high school choice assignments in Boston or New York
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described in Pathak and Sethuraman (2011), Abdulkadiroğlu, Pathak, and Roth (2009) and

Pathak and Sönmez (2008).

Section 2 sets up the model with ordinal preferences. Section 3 defines the class of mod-

ified probabilistic serial mechanisms with subcapacities and explains why they are the only

mechanisms that are efficient, within-group envy-free and symmetric. Section 4 sets up the

model for the planner with cardinal preferences and explains the convex (linear) program-

ming problem to solve for the optimal subcapacities.

2. Ordinal Moδ

In this section, I describe the model.

There is a finite set of schools L �
 
1, 2, ..., L̄

(
and a finite set of characteristics K � 

1, 2, ..., K̄
(
. Each student has one of these characteristics, thus the students are partitioned

into groups by their characteristics. School l has mass of cl spots and there are mass µk of

students with characteristic k. The total mass of the students is 1 and I assume that there

is enough room in the schools to assign each student,

¸
lPL

cl ¥
¸
kPK

µk � 1.

A student’s preference is given by a strict ordering p P PpLq, where PpLq is the set of all

permutations (strict orderings) of L. A type is a pair pk, pq, and µpk, pq denotes the mass of

students in group k who have preference ordering p. Let the individual students be indexed

by i P I � r0, 1s, equipped with the Lebesgue measure λ.

Definition 1. A (full support) profile of students is a λ-measurable function, type : I Ñ

K � PpLq, that satisfies the following conditions:

(1) Type and group consistency,

¸
pPPpLq

µpk, pq � µk,
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where,

µpk, pq �

»
iPI,typepiq�pk,pq

dλ.

(2) Full support,

µpk, pq ¡ 0 @ pk, pq P K � PpLq.

In this definition, a profile maps the students’ names to their types, p1q states that the

total mass of students with type pk, pq is µpk, pq and the total mass of students in group k is

µk, and p2q states that the measure of students with every possible type is strictly positive.

More importantly, each profile induces a full support distribution of types, µ, where µpk, pq

is the mass of students of type pk, pq.

Definition 2. An allocation is a measurable function q : I Ñ ∆L, where q pl; iq is the

probability that a student i P I is assigned to school l. An allocation q is feasible if,

»
iPI
q pl; iq dλ ¤ cl.

An allocation maps each student in I to a stochastic allocation. One interpretation is

that students receive their spot randomly according the distribution q piq. Each stochastic

allocation can be implemented by a randomized mechanism. For fixed µk, let M be the set

of all profiles and Q be the set of all feasible allocations.

Definition 3. A mechanism is a function Q : M Ñ Q, that maps every profile to a feasible

allocation.

Next, I define ordinal efficiency using first order stochastic dominance.

Definition 4. An allocation q is dominated by q1 for a student with type pk, pq if

¸
l1¡pl

q pl1; iq ¤
¸
l1¡pl

q1 pl1; iq @ l P L,

with strict inequality for at least one l.
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One allocation dominates another if it first order stochastically dominates the other allo-

cation. The three desired properties of an ordinal mechanism in this model are the following.

I will use the notation k : I Ñ K to represent the function that maps a student to her group

characteristics.

Definition 5. Efficiency: q piq is not dominated by any q1 piq for any i P I.

Definition 6. Within-group envy-free: q piq is not dominated by any q pjq for any i, j P

I such that k piq � k pjq.

Definition 7. Within-group symmetry: for each type pk, pq, q piq � q pjq for any i, j P

I such that type piq � type pjq � pk, pq.

Within-group symmetry states that students with the same characteristics and preferences

should be assigned the same allocation. Given this assumption, I can use the notation

q pl; k, pq to denote the probability of a student with type pk, pq getting allocated the school l.

Envy-freeness states that any a student pk, pq will not prefer the allocation of another student

pk, p1q for p1 � p. The assumption is a weaker version of strategy-proofness. Efficiency implies

that no other allocation is preferred by all students.

In the case in which every student with the same type gets the same allocation, the

notation q pl; k, pq will be used in place of q pl; iq to denote the probability that a student

with type pk, pq is assigned to school l. Consequently, the total amount of students with

type pk, pq who are assigned to school l satisfies,

µpk, pq � q pl; k, pq �

»
iPI:typepiq�pk,pq

q pl; iq dλ.

3. Modified Probabilistic Serial

In this section, I describe the probabilistic serial mechanism from Bogomolnaia and Moulin

(2001) and the modification to include subcapacities that represent the maximum number of

students with a certain characteristic that can be allocated to each school. I also state and



8 YOUNG WU

explain the main result that a mechanism is efficient, within-group envy-free and within-

group symmetric if and only if it is modified probabilistic serial.

I start by briefly summarizing the mechanism in Bogomolnaia and Moulin (2001). I

describe their algorithm as if the students are consuming portions of schools continuously

at a fixed rate. Schools start with sizes equal to their capacities and every student starts

eating her favorite school at rate 1 until some schools are completely eaten. Then, students

start to eat their favorite among the remaining schools that are not eaten. The process ends

at time 1, and the total amount of school a student has eaten will represent the probability

that she is allocated to school.

Then I define the collection of subcapacities
 
ckl
(
kPK,lPL

. Subcapacity ckl represents the

maximum number of students in group k that can be assigned to school l by the algorithm.

They must satisfy the feasibility condition,

¸
kPK

ckl ¤ cl @ l P L.

I modify the mechanism in Bogomolnaia and Moulin (2001) in two ways.

(1) Schools start with sizes equal to their capacities but are divided into subcapacities

for each group specified by
 
ckl
(
lPL,kPK

, so the initial sizes of the schools are not equal

to their actual capacities.

(2) Students in one group cannot eat the portion of the schools allocated to other groups.

In this algorithm, all students with the same type get the same allocation. Therefore,

within-group symmetry is ensured. The formal descriptions of the algorithms are as follows.

Before that, I define the following function.

M pl, Aq is a function that maps a school, l, and a set of available schools, A � L, to the

set of preference orderings in which the favorite school among the set A is l,

Mpl, Aq � tp P PpLq : l ¡ l1 @ l1 P Az tluu . (1)
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Algorithm 1. Given subcapacities
 
ckl
(
lPL,kPK

, the probabilistic serial mechanism (PS) as-

signs to each profile the allocation resulting from the following process, assuming µ is the

distribution of types induced by the given profile.

Initialize: L0
k � L, y0

k � 0 for each k P K and q0 pl; k, pq � 0 for each l P L, k P K, p P

PpLq,

Iteration: Assume Ls�1
k , ys�1

k , qs�1 are defined for each k. For each k,

(1) For each l, find ysk plq, the earliest time at which students in group k finish consuming

school l,

ysk plq � arg min
y

$'&
'%

¸
pPMpl,Ls�1

k q

µ pk, pq
�
y � ys�1

k

�
�

¸
pPPpLq

µ pk, pq qs�1 pl; k, pq � ckl

,/.
/- .

(2) Find ysk, the earliest time at which students in group k finish consuming any school,

ysk � min
l
ysk plq .

(3) Find F s
k , the set of schools that are completely consumed by students in group k,

F s
k � arg min

l
ysk plq .

(4) Find the remaining set of available schools for students in group k,

Lsk � Ls�1
k zF s

k.

(5) Find qs pl; k, pq, the temporary allocation of school l for students with type pk, pq,

which represents the amount of school l the students have eaten so far until the end

of step s,

qs pl; k, pq � qs�1 pl; k, pq � 1pPMpl,Ls�1
k q

�
ys � ys�1

�
.

For a full support profile, Bogomolnaia and Moulin (2001) showed that probabilistic serial

generates an allocation is efficient, envy-free, symmetric, and Liu and Pycia (2016) showed
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that an allocation is efficient, envy-free, and symmetric if and only if it is generated by

probabilistic serial. The result can be extended to the problem with multiple groups with a

similar proof to Theorem 1 in Liu and Pycia (2016).

Proposition 1. An allocation, q, is efficient, within-group symmetric, and envy-free for a

full support profile that induces type distribution µ if and only if it is generated by Algorithm

1 modified probabilistic serial with subcapacities,

ckl pµq �
¸

pPPpLq

µ pk, pq q pl; k, pq .

The above formula for ckl says nothing about how to choose the subcapacities in practice

since they are just one of many capacities that are compatible with the allocation q.

4. Cardinal Moδ

In this section, I introduce the model with cardinal utility functions that is ordinally

consistent with the previous model. I explain that the cardinally efficient allocation can be

obtained from the modified probabilistic serial mechanism with subcapacities which can be

found as the solution to a convex (linear) optimization problem.

The cardinal utility functions should be compatible with the preference relations from

ordinal model. Let u piq : L Ñ R� be the utility function of a student i, where u pl; iq

represents the utility from attending school l. A utility function induces a preference relation

p if for every student i with the preference p,

l ¡p l
1 whenever u pl; iq ¡ u pl1; iq @ l P L.

Here, I do not need to assume the students with the same type pk, pq have the same utility

function, but since the within-group symmetry assumption requires the allocation to be the

same for students with the same type, and the welfare function uses the average utilities, I
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can restrict attention to using the average utilities over the same type,

u pl; k, pq �
1

µpk, pq

»
typepiq�pk,pq,ppupiqq�p

u pl; iq dλ,

where p puq is the preference relation induced by the utility ranking u.

Definition 8. A utility distribution that is consistent with a preference profile µ is the set

of utility functions u piq, such that,

»
typepiq�pk,pq,ppupiqq�p

dλ � µpk, pq @ k P K, p P PpLq.

Definition 9. The allocation q� is cardinally efficient if it maximizes the average expected

welfare:

q� P arg max
qPQ

»
iPI

¸
lPL

u pl; iq � q pl; iq dλ.

If the mechanism is restricted to be within-group symmetric, then q� maximizes the welfare

function

W pqq �
¸

pk,pqPK�PpLq

¸
lPL

u pl; k, pq � q pl; k, pq � µpk, pq.

Since probabilistic serial is ordinally efficient, any cardinally efficient allocation must be

obtained by probabilistic serial for some subcapacities. Therefore, I write the allocation and

welfare as a function of the subcapacities in the probabilistic serial mechanism that generates

them, let c �
 
ckl
(
lPL,kPK

, ck �
 
ckl
(
lPL

,

Wk

�
ck
�
�
¸
lPL

u pl; k, pq q PS pcq pl; k, pqµpk, pq,

and,

W pcq �
¸
kPK

Wk

�
ck
�
,

where q PS pcq is the allocation generated by probabilistic serial with subcapacities c.
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Proposition 2. The function W pcq is concave in c.

In order to find welfare-maximizing mechanism, I need to find the maximum of function

W pcq subject to the following linear constraints.

max
ckl Pr0,cls

W pcq

such that
¸
kPK

ckl � cl

and
¸
lPL

ckl � µk

The first constraint is the school capacity constraint requiring the subcapacities for a school

for all groups add up to the total physical capacity of the school. The second constraint is

the profile constraint requiring the subcapacities for a group from all schools add up to the

total mass of the students in that group. Both constraints hold at optimum because of the

assumption that there is enough room in the schools to allocate all the students.

The optimization can be done computationally. Proposition 2 says that function W pcq is

concave in c, hence, standard gradient methods can be used to find the maximum.

5. Proofs

5.1. Proof of Proposition 1. I divide the proof into three parts, stated as the following

three lemmas.

Lemma 1. Modified probabilistic serial is (ordinally) efficient.

Lemma 2. Modified probabilistic serial is envy-free.

Lemma 3. Given a full-support profile, µ, if an allocation q is efficient, within-group envy-

free and symmetric, then it is generated by modified probabilistic serial with constraints ckl �¸
pPPpLq

q pl; k, pqµpk, pq.

Lemma 1 and Lemma 2 are modified from Theorem 1 and Proposition 1 of Bogomolnaia

and Moulin (2001), respectively, and Lemma 3 is modified from Theorem 1 of Liu and
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Pycia (2016). The modified probabilistic serial mechanism is within-group symmetric by

construction, so these three lemmas, together with the full support assumption, implies

Proposition 1.

Proof of Lemma 1: Suppose, for a contradiction that q is obtained by modified probabilistic

serial and it is not efficient, and q is dominated by q1.

Let pk, p1q be the student such that q pk, p1q � q1 pk, p1q, there are l0, l1 with l0 ¡p1 l1, such

that,

q pl1; k, p1q ¡ q1 pl1; k, p1q ,

q pl0; k, p1q   q1 pl0; k, p1q .

Then l0 ¡p1 l1 and q pl1; k, p1q ¡ 0.

Similarly, there is l1 ¡p2 l2 and q pl2; k, p2q ¡ 0.

Since L is finite, there exists some cycle,

l0 ¡p1 l1...lR ¡pR l0,

such that for every r P t0, 1, ..., Ru,

lr�1 ¡pr lr and q plr; k, prq ¡ 0.

Take an arbitrary r, let the qs represent the partial probabilistic serial allocation at time s,

and define the following,

sr � inf
s
ts : qs plr; kr, prq ¡ 0u .

Note that pr�1 R L
sr�1

kr
, where the notation Lsk is introduced in step p4q of Algorithm 1 as the

remaining set of available schools for students in group k after step s. This implies sr�1   sr.

This is true for for every r, implying s0   s1   ...   sR�1   s0, which leads to a

contradiction. �
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Proof of Lemma 2: Fix a student pk, pq with l1 ¡p l2... ¡p lL̄, and let s1 be the earliest time

at which l1 is completely eaten, meaning,

l1 P L
s1�1
k zLs1k .

For s ¤ s1 � 1, pk, pq P M pl1, L
s
kq, where M pl, Aq is introduced before Algorithm 1 by

Equation 1 as the set of preference orderings in which the favorite school among the set A

is l, and

qs1 pl1; k, pq � ys1k ¥ qs1 pl1; k, p1q @ p1 � p.

Since l1 is completely eaten at s1, the previous relationship holds for final allocation q as

well,

q pl1; k, pq ¥ q pl1; k, p1q @ p1 � p.

Now, let s2 be the earliest time tl1, l2u is completely eaten, s2 ¥ s1 and for the same reason,

q pl1; k, pq � q pl2; k, pq � ys2k ¥ q pl1; k, p1q � q pl2; k, p1q @ p1 � p.

Repeat the argument to see that q pk, pq dominates q pk, p1q for every p1 � p. �

Proof of Lemma 3: Fix any allocation, q1, that is efficient, within-group envy-free and sym-

metric, and the allocation, q1, obtained by modified probabilistic serial. Let qt denote the

partial allocation at time t P r0, 1s from the probabilistic serial.

I show that for any student with type pk, pq P K�PpLq, any school l P L, and at any time

t P r0, 1s , q1 dominates qt. Then, by the efficiency property of q1 from Lemma 1, q1 � q1,

which concludes the proof.

Assume for a contradiction, let τ be the earliest time when q1 does not dominate qt. Using

the notations in Definition 4, for some school l and and student with type pk, pq,

τ � inf

$&
%t :

¸
l1¡pl

q1 pl1; k, pq  
¸
l1¡pl

qt pl1; k, pq

,.
- .
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By continuity of the function qt in t, q1 dominates qt for each t P r0, τ s. In particular, at time

τ , the students with type pk, pq must be eating some school l, and,

¸
l1¡pl

q1 pl1; k, pq ¥
¸
l1¡pl

qτ pl1; k, pq � τ.

Since τ the earliest time the above inequality stops holding,

¸
l1¡k,pl

q1 pl1; k, pq �
¸

l1¡k,pl

qτ pl1; k, pq � τ.

Now, using the full support condition, l must be the favorite object of some agent pk, p1q,

and,

q1 pl; k, p1q ¥ qτ pl; k, p1q � τ.

The envy-free assumption implies pk, pq does not prefer the allocation of pk, p1q,

q1 pl; k, p1q ¤ τ.

Therefore,

q1 pl; k, p1q � τ.

Since school l is not completely eaten at time τ ,

q1 pl; k, p1q ¡ τ.

Therefore, the equalities imply that pk, p1q gets less l in q1 than q1. The efficiency of q1

implies that there is another student pk, p̂q who gets,

q1 pl; k, p̂q ¡ q1 pl; k, p̂q .
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And there is some school l̂ that is not l that student pk, p̂q prefers just more than school l,

¸
l1¡p̂ l̂

q1 pl1; k, p̂q ¥
¸
l1¡p̂ l̂

qτ pl1; k, p̂q ,

implying,

¸
l1¡p̂ l̂

q1 pl1; k, p̂q ¥ τ � qτ pl; k, p̂q ,

and,

¸
l1¡p̂ l̂

q1 pl1; k, p̂q ¥ τ � q1 pl; k, p̂q ,

and finally,

¸
l1¡p̂l

q1 pl1; k, p̂q ¡ τ.

Comparing students pk, p1q and pk, p̂q, envy-freeness of q1 leads to a contradiction. �

5.2. Proof of Proposition 2. I prove several smaller lemmas about properties of envy-free

allocations in order to prove concavity.

Lemma 4. Any convex combination of envy-free allocations is envy-free.

Lemma 5. Any inefficient envy-free allocation has an envy-free Pareto improvement.

Lemma 6. The set of envy-free allocations are closed.

Proof of Lemma 4: Consider arbitrary pair of students pk, pq and pk, p1q under two different

allocations q1 and q2.
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Let p � l1 ¡ l2 ¡ l3... ¡ lL̄ be the preference ranking of the first student, and define the

following,

ti1 � min
t

#
ţ

s�1

q1 pls; k, pq  
ţ

s�1

q1 pls; k, p
1q

+

ta1 � max
t

#
ţ

s�1

q1 pls; k, pq ¤
ţ

s�1

q1 pls; k, p
1q

+

ti2 � min
t

#
ţ

s�1

q2 pls; k, pq  
ţ

s�1

q2 pls; k, p
1q

+

ta2 � max
t

#
ţ

s�1

q2 pls; k, pq ¤
ţ

s�1

q2 pls; k, p
1q

+

By envy-freeness, ti1 � ta1 and ti2 � ta2,

Consider a convex combination q0 � pαq q1 � p1 � αq q2 for α P r0, 1s,

For t ¤ min
 
ti1, t

i
2

(
,

ţ

s�1

q0 pls; k, pq �
ţ

s�1

pαq q1 pls; k, pq � p1 � αq q2 pls; k, pq

 
ţ

s�1

pαq q1 pls; k, p
1q � p1 � αq q2 pls; k, p

1q

�
ţ

s�1

q0 pls; k, p
1q

And for t ¥ max tta1, t
a
2u,

ţ

s�1

q0 pls; k, pq �
ţ

s�1

pαq q1 pls; k, pq � p1 � αq q2 pls; k, pq

¡
ţ

s�1

pαq q1 pls; k, p
1q � p1 � αq q2 pls; k, p

1q

�
ţ

s�1

q0 pls; k, p
1q

Therefore, under q0, no student strictly prefers the allocation of another student, q0 is envy-

free. �
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Proof of Lemma 5: Consider an allocation q and another allocation q1 that (Pareto) domi-

nates q.

For each student pk, pq and pair of schools l1 and l2, define the flow from school l1 to l2 by

∆ pl1, l2; k, pq satisfying:

¸
l2PL

∆ pl1, l2; k, pq � max t0, q pl1; k, pq � q1 pl1; k, pqu ,

¸
l1PL

∆ pl1, l2; k, pq � max t0, q pl2; k, pq � q1 pl2; k, pqu ,

∆ pl1, l2; k, pq ¥ 0.

Then define another allocation q� by:

q� pl1; k, pq � q pl1; k, pq �
¸
l2PL

1∆pl1,l2;k,pq¡0 or l2¡pl1 � ∆� pl1, l2; k, pq

�
¸
l2PL

1∆pl2,l1;k,pq¡0 or l2¡pl1 � ∆� pl2, l1; k, pq

where ∆� is defined as:

∆� pl1, l2; k, pq �

¸
pk1,p1qPK�PpLq

∆ pl2, l1; k1, p1q � µ pk1, p1q

¸
pk1,p1q:l1¡p1 l2 and ∆pl1,l2;k1,p1q�0

µ pk1, p1q �
¸

pk1,p1qPK�PpLq

∆ pl2, l1; k1, p1q � µ pk1, p1q

Note that the flows from q to q1 and the flows from q to q� are the same since the previous

system for ∆ is still satisfied.

Also, q� still dominates q since,

$&
% ∆� pl1, l2; k, pq ¡ 0 if l1 ¡p l2

∆� pl1, l2; k, pq   ∆ pl1, l2; k, pq if l2 ¡p l1

And q� is envy-free since,

$&
% ∆� pl1, l2; k, pq ¥ ∆� pl1, l2; k, p1q for every p1 if l1 ¡p l2

∆� pl1, l2; k, pq ¥ 0 if l2 ¡p l1
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Therefore, q� is an envy-free Pareto improvement to q. �

Proof of Lemma 6: Consider any sequence of allocations tqnu
8
n�1 and the element-wise limit

q�.

Fix any two students pk, pq and pk, p1q, since qn are envy-free for each n,

¸
l¡pl1

qn pl; k, p
1q ¤

¸
l¡pl1

qn pl; k, pq @ l
1 P L,

where ls is the s -th school in the preference ranking of student pk, pq.

Then,

lim
nÑ8

¸
l¡pl1

qn pl; k, p
1q ¤ lim

nÑ8

¸
l¡pl1

qn pl; k, pq @ l
1 P L,

¸
l¡pl1

q� pl; k, p1q ¤
¸
l¡pl1

q� pl; k, pq @ l1 P L.

Therefore, q� is envy-free. The set is closed under limits.

Similarly, the set of Pareto improvements of any allocation is closed. �

Proof of Proposition 2: Let c, c1 be two vectors of subcapacities, and q, q1 be the probabilistic

allocation with subcapacities c, c1 respectively.

Consider allocation q0 � pαq q � p1 � αq q1 and the welfare of allocation q0 is pαqW pcq �

p1 � αqW pc1q

If q0 can be obtained from PS with capacities pαq c�p1 � αq c1, then pαqW pcq�p1 � αqW pc1q �

W ppαq c� p1 � αq c1q.

Suppose q0 is obtained from probabilistic serial, and since q0 is envy-free from Lemma 4,

q0 is not efficient by Proposition 1.

Let V be the set of envy-free allocations that Pareto dominates q0.

V is bounded since the set of allocations is bounded and the set of all envy-free allocations

and the set of allocations that are Pareto improvements to q0 are closed by Lemma 8. Then,

V is an intersection of two compact sets implying that V is compact.

Therefore, there is an allocation q� P V that maximizes W p�q.
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Note that q� must be efficient because if not, by Lemma 5, there is a envy-free Pareto

improvement of q� in V which contradicts the definition that q� maximizes W p�q.

q� is envy-free and efficient, implying that q� is the probabilistic serial allocation with

capacity pαq c� p1 � αq c1.

Therefore, pαqW pcq � p1 � αqW pc1q ¤ W ppαq c� p1 � αq c1q ,W is concave in c.

The function W(c) is non-decreasing for ckl due to the assumption that u p�q ¥ 0. �
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