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This thesis consists of three chapters.

In chapter 1, titled ”Design of Committee Search,” I apply a mechanism design approach to committee

search problems, such as hiring by a department or a couple’s search for a house. A special class of

simple dynamic decisions rules have agents submit in each period one of three votes: veto, approve, or

recommend; the current option is adopted whenever no agent vetoes and at least one agent recommends.

I show that every implementable payoff can be attained by randomizing among these simple rules. This

result dramatically simplifies the design problem.

In chapter 2, titled ”School Choice with Observable Characteristics,” I study a school choice problem

where students have observable characteristics that are correlated with their preferences. For example,

one such characteristic may be the location of a student’s home, which is correlated with preferences

if students tend to prefer nearby schools. I consider mechanisms that are envy-free, efficient, and treat

students with the same observable characteristics equally. I show that the welfare-maximizing mechanism

in this class is a modified probabilistic serial mechanism with capacities. These capacities specify the

maximum number of students with given characteristics that can be admitted into each school.

In chapter 3, titled ”Mechanism Design for Stopping Problems with Two Actions,” I analyse a class

of dynamic mechanism design problems in which a single agent privately observes a time-varying state,

chooses a stopping time, and upon stopping, chooses between two actions. The principal designs transfers

that depend only on the time the agent stops and on the alternative the agent chooses. The analysis

provides necessary and sufficient conditions for implementability in this environment. In particular, I

show that any stopping rule in which the agent stops the first time the state falls outside of an interval

in the state space can be implemented if and only if a pair of monotonicity conditions is satisfied.
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Chapter 1

Design of Committee Search

1.1 Introduction

A hiring committee with two members receives job applications and conducts interviews until a position

is filled. A decision is made right after each interview and is irreversible. Every committee member

obtains private value from hiring a candidate. A common decision rule is the unanimity rule, according

to which a candidate is hired whenever he is preferred by both members. Another possibility is a rule

according to which each member submits a numerical score for a candidate and hiring occurs whenever

the sum or average score is above a preset threshold.

A married couple looks for a house until they decide on purchasing one. The Canadian housing

market is competitive, and a house is gone before a new one becomes available. The husband and

the wife have different views regarding the ideal house, and their preferences with respect to its style

and size may differ. In many households, decisions are not made collectively, and one member can

establish dictatorship. In other cases, each member of the couple rates a house as ”ideal”, ”acceptable”

or ”uninhabitable”, and they purchase the house if it is not uninhabitable for either member and ideal

for at least one.

Two coauthors periodically gain access to new data sets. The authors have differing opinions about

whether a certain data set could lead to interesting results. Data sets are costly to obtain and process,

and they are likely to be used by other authors before a new one appears. A reasonable decision rule

could be adopting a data set whenever at least one of the coauthors thinks the potential results are

interesting. The threshold for a data set to be deemed interesting can vary between coauthors and and

over time.

1
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husband’s valuation

wife’s valuation

region to buy house

not buy

uninhabitable

acceptable

ideal

Figure 1.1: A possible decision rule in the couple’s housing example

In all of these scenarios, two agents have to make a collective and irreversible decision regarding an

option to adopt when facing options that are presented to them sequentially. Monetary transfers are

not feasible. All the decision rules in these examples are plausible ones that are used widely in various

collective search problems. In this paper, I focus on a class of simple voting rules, called ternary rules,

that give each agent the power to veto, approve, or recommend an option, and the current option is

adopted whenever no one vetoes and at least one of the agents recommends. It is similar to the ”ideal-

acceptable-uninhabitable” rule described in the house-searching example and in Figure 1.1. The shaded

region in Figure 1.1 depicts the set of value pairs that lead to the purchase of the current house. The

contribution of this paper is showing that every implementable decision rules is payoff-equivalent to some

randomization among ternary rules, and as a result, a designer can restrict attention to the use of only

these simple voting rules.

In particular, I consider a model in which two agents observe private values of, for example, hiring a

candidate, in every period. The values are independent over time, but the values from different agents

in the same period can be correlated. In each period, either the candidate is hired, in which case, every

agent gets her private value, or the decision is delayed to the next period. The mechanism incentivizes

the agents to report their values truthfully without using transfers, and it uses differing future decision

rules to link incentives over time.

I assume a finite time horizon, and each agent obtains a fixed value from an outside option if no

candidate is ever hired. In the last period, the only implementable decisions are,

• unanimity, where the candidate is hired when both agents have values higher than their outside
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options,

• dictatorship, where the candidate is hired as long as the dictator agent has value higher her outside

option,

• reverse unanimity, where the candidate is not hired when both agents have values lower than their

outside options, and

• constant, where the candidate is either always hired or never hired.

In the second to last period, a ternary rule specifies a lower threshold of value below which an agent

vetoes and an upper threshold above which an agent recommends. It also needs to specify which rule to

use in the last period after each pair of reported values. The following is an example of an implementable

ternary rule.

• If one agent recommends and the other does not veto, the candidate is hired, and the search ends.

• If one agent recommends and the other vetoes, the candidate is not hired, and the agent who

recommends becomes the dictator in the last period.

• If both agents choose to either approve or veto, the candidate is not hired, and the agents use the

unanimity in the last period.

The reason for using the dictator rule is to give the agent who vetoes another agent’s preferred candidate

a lower expected future payoff as punishment to ensure that veto power will be exercised with discretion.

Many other decision rules are implementable in the periods before the last such as the one depicted

in Figure 1.2. Given an implementable rule, the domain of each agent’s value can be partitioned into

three regions:

• the region where the candidate is not hired regardless of the other agent’s value, called the veto

region,

• the region where the candidate is hired as long as the other agent does not veto, called the

recommendation region, and,

• the remaining region, called the approval region.

A candidate may or not may be hired in the region where both agents approve. Among the rules with

the same partitions, the one that always rejects the candidate in the region where both agents approve
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husband’s valuation

wife’s valuation

region to buy house

not buy
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VR AR RR

Figure 1.2: Another possible decision rule in the couple’s housing example

is a ternary rule, and it yields the highest payoffs for both agents. This is the case because, intuitively,

when considering a candidate whom both agents do not recommend, no agent will have a significant loss

from continuing the search, and on average, they can both be better off if they continue.

For the same reason, the rule that always hires the candidate in the region where both agents approve

is another ternary rule that yields lower payoffs for both agents. The dictator rule, according to which

the candidate is hired whenever the dictator’s value is above some threshold, is another special case of

a ternary rule. With a carefully chosen threshold, dictatorship gives one agent higher payoff and the

other agent lower payoff compared to the original rule. Therefore, any implementable decision rule is

payoff-equivalent to the randomization between these ternary rules.

Technically, the model involves the implementation of an incentive compatible mechanism. Dynamic

ex-post incentive compatibility is used as the definition of implementability so that the solution is robust

to private communication between agents and robust to correlation between values and beliefs of the

agents. I also restrict attention to mechanisms that are deterministic in every period, where either the

candidate is hired for certain, or the decision is delayed. These assumptions make the model tractable.

I make other assumptions for the purpose of presentation. For example, there are only two agents and a

finite number of periods, and the private values are drawn from distributions with full support on some

compact set and are independent over time. Those assumptions can be relaxed without significantly

changing the main results.

This paper is closely related to the literature on dynamic mechanism design without transfers. Guo

and Hörner [18] investigate the problem without transfers, and in which goods can be allocated in
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multiple periods. They characterize the optimal mechanism and provide a simple implementation in

which the agents have virtual budgets. Lipnowski and Ramos [25] develop a similar model with similar

results, in which the principal has less commitment power. In this model, the principal can decrease the

veto threshold in the next period if she exercises her veto power. This is similar to the budget mechanism

from Guo and Hörner [18] in the sense that the agent has a virtual budget of veto power, and if she

vetoes excessively, she will gradually lose her power to veto.

Kovác, Krähmer, and Tatur [23] examine the stopping problem in which only a single good is allo-

cated. In their model, the optimal mechanism is one in which the principal chooses different probabilities

for assigning the good at different times to incentivize the agent’s use of the stopping rule the principal

prefers. I focus on allocation rules that are deterministic in each period, so instead of change probabil-

ities, the principal changes the amount of control an agent has over the allocation in every period to

incentivize an agent. The size of the region where an agent has more control over the allocation, for

example, to veto or recommend it, is different in every period, and this is used in place of the probabil-

ities in the deadline mechanism proposed by Kovác, Krähmer, and Tatur [23]. Both Guo and Hörner

[18] and Kovác, Krähmer, and Tatur [23] focus on single-agent problems, whereas this paper focuses on

problems with more than one agent.

Johnson [20] considers the problem with multiple agents, but the good is allocated to only one of

the agents. He uses the promised utility approach where the principal promises future allocation rules

that correspond to different expected payoffs to incentivize truth-telling. I use the same approach, but

I consider the problem with a public good. In his model, the agents trade favors in a virtual market for

decision rights, and as a result, they take turns obtaining their favorite private allocation. In this model,

the agents also trade decision rights, but the goal is to wait for the public allocation that is preferable

to every agent.

Moldovanu and Shi [27] study the committee search problem similar to mine. They solve the sta-

tionary voting rules that have a single threshold for each agent. Compte and Jehiel [12] and Albrecht,

Anderson, and Vroman [3] develop a similar model and focus on majority voting rules. I consider all

direct revelation mechanisms, and one result states that if decisions cannot be linked over time, then all

implementable decision rules are the voting rules with a single threshold, as in Moldovanu and Shi [27].

Additional decision rules that are not voting rules can be implementable in this environment through

the linking of decisions over time, but I show that every implementable rule is payoff-equivalent to some

randomization among ternary voting rules, and this justifies the restriction to using only simple voting

rules when solving committee search problems.

This paper is organized as follows. Section 1.2 introduces the model. Section 1.3 characterizes
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implementability. Section 1.4 states and explains the main result: every implementable payoff can be

attained by randomizing among ternary rules. Section 1.5 concludes.

1.2 Model

In this section, I describe the agent’s stopping problem and the principal’s design problem. In particular,

I define implementability as dynamic ex-post incentive compatibility, and explain why it is appropriate

for this model.

1.2.1 Valuations

In this subsection, I describe the payoffs and the class of mechanisms.

I describe the model with two agents. A principal hires a new employee through a committee. In

each period, a new candidate appears and each agent in the committee observes the value of hiring the

candidate. The number of periods T is finite and there is no discounting. I assume that the values in

period t, vt = (vt,1, vt,2) ∈ V = [v, v̄]
2

are independently distributed over time with continuous density

ft and full support V, and that the means are normalized to 0 in each coordinate.

I use vt to denote a history of values, or reports, from period 1 to period t,

vt = (v1, v2, ..., vt)

= ((v1,1, v1,2) , (v2,1, v2,2) , ..., (vt,1, vt,2)) .

I assume independence over time but not between agents. Independence is not necessary for the

results in this paper to hold, I make the assumption only for simpler presentation. In particular, the

assumption simplifies the notations and the calculations in the examples. The value of hiring a candidate

to each agent may be correlated.

Due to the revelation principle for deterministic mechanisms with ex-post constraints in Jarman,

Meisner et al. [19], I restrict attention to direct mechanisms, in which the agents report only their own

valuation in every period, which indicates whether to hire the candidate in each period. I define the

mapping q : V → [0, 1] as a stage mechanism after some history of reports, vt−1 = (v1, v2, ..., vt−1). Here,

q
(
vt|vt−1

)
is the conditional probability that the candidate is hired in period t if the agents report vt

after the history vt−1, condition on the candidate not hired in periods before t. When the context is

clear, I omit the history after which the stage mechanism is used and use the expression q (vt). The
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grand mechanism, Q, is the collection of stage mechanisms following every possible history,

Q :
⋃
t≤T

Vt → [0, 1] .

The mechanism can depend on historical reports. As a result, the principal can choose different alloca-

tions in the future as rewards or punishments to incentivize truthful reports.

If no candidate is hired by the end of the last period, the agents get values from the outside option

in period T + 1, vT+1 = v? = (v?1 , v
?
2), in the interior of V. For each terminal history in the form

vT+1 = (v1, v2, ..., vT , v
?) ∈ VT+1, the total probability of hiring the candidate should add up to 1,

T+1∑
t=1

q (vt)

t−1∏
s=1

(1− q (vs)) = 1,

where q(vT+1) = 1 for vT+1 = v?.

Given a grand mechanism Q, let wi,t
(
Q; vt−1

)
denote the ex-ante continuation value of agent i in

period t after some history vt−1 ∈ Vt−1, before vt, vt+1, ..., vT are realized, assuming both agents report

truthfully.

wi,t
(
Q; vt−1

)
= E

[
T+1∑
s=t

q (vs)

s−1∏
s′=1

(1− q (vs′)) vi,s

]
,

where q(vT+1) = 1 and vT+1 = v? with probability 1.

For a mechanism, Q, the continuation value after history vt−1 is a pair,

wt
(
Q; vt−1

)
=
(
w1,t

(
Q; vt−1

)
, w2,t

(
Q; vt−1

))
.

In particular, the total payoff an agent, i, gets from a mechanism, Q, is wi,1 (Q).

I also define two grand mechanisms, Q1, Q2, to be payoff-equivalent after history vt−1 if,

wt
(
Q1; vt−1

)
= wt

(
Q2; vt−1

)
.

In particular, the payoff-equivalence between two dynamic mechanism Q1 and Q2 after history vt−1

is defined in terms of the ex-ante continuation payoff in period t before the vector of period-t valuations

(v1,t, v2,t) is realized.
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1.2.2 Implementability

In this subsection, I define dynamic ex-post implementability and outline the reasons it is used for

this problem. Moreover, I define and restrict attention to a subset of random mechanisms I call quasi-

deterministic mechanisms, where the mechanism is deterministic in each stage but between-period ran-

domization is allowed.

Definition 1. A mechanism, Q, is (dynamic ex-post) incentive compatible, if in each period t ∈

{1, 2, ..., T}, after each history vt−1 ∈ Vt−1, every i ∈ {1, 2}, every vi,t ∈ [v, v̄], and every v−i,t ∈ [v, v̄],

vi,t ∈ arg max
v̂i,t∈[v,v̄]

vi,tq (v̂i,t, v−i,t) + (1− q (v̂i,t, v−i,t))wi,t+1

(
Q; vt−1, v̂i,t, v−i,t

)
.

A mechanism is dynamic ex-post incentive compatible (or the corresponding decision rule is dynamic

ex-post implementable) if, in every period, it is optimal to report the true valuation given the other

agent’s report.

This definition is the same as the one from Noda [28], but without transfers and discounting. Noda

[28] terms this type of implementability within-period ex-post incentive compatibility, or wp-EPIC. Berge-

mann and Välimäki [6], Parkes, Cavallo, Constantin, and Singh [29],and Athey and Segal [4] use a more

complicated version of ex-post implementability since valuations and types in their models can be cor-

related over time.

Ex-post implementability is used because it is robust to private communication between agents,

within-period correlation between valuations, and variation in agents’ beliefs about each other’s types.

This definition of incentive compatibility also makes the model tractable. Bergemann and Morris [5]

provide details regarding the use of ex-post incentive compatibility.

I omit individual rationality constraints, and agents are forced to participate.

I focus on mechanisms that are deterministic in every stage in which either the candidate is hired for

certain or the decision is delayed to the next period.

Definition 2. A stage mechanism, q, is deterministic if q (·) ∈ {0, 1}. A grand mechanism, Q, is quasi-

deterministic if after every history vt−1 ∈ Vt−1, only randomization among multiple deterministic stage

mechanisms is used.

For example, after (v1,t, v2,t) are reported, the principal must either hire the candidate with proba-

bility 1 or delay hiring to the next period, but in the event that the principal chooses to delay, he can

randomize among multiple stage mechanisms in period t+ 1.
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1.3 Implementability

In this section, I characterize the conditions for implementability. It is convenient to divide the analysis

into a few steps. In the first step, I characterize implementable stage mechanisms in the last period.

Next, I explain that the implementability in the dynamic setting can be reduced to a version of the static

problem with appropriately chosen continuation values. Finally, I explain why the dynamic problem is

substantially richer than a sequence of static ones.

1.3.1 Static Implementation

In this subsection, I consider the problem when T = 1. In this case, the continuation value is fixed

at the outside option (v?1 , v
?
2). I describe a class of mechanisms called binary stage mechanisms that

characterizes implementability. The same characterization applies to the last period when T > 1.

Definition 3. A stage mechanism, q, is binary, with outside option (a1, a2), if for each i ∈ {1, 2}, for

every v−i,t ∈ [v, v̄], either q (vi,t, v−i,t) is constant (0 or 1) for every vi,t ∈ [v, v̄], or,

q (vi,t, v−i,t) =

 0 if vi,t < ai

1 if vi,t > ai

.

As shown in Figure 1.3, there are only six mechanisms that are binary for a fixed outside option. The

shaded regions are the acceptance regions, {vt : q (vt) = 1}, where the candidate is hired. The remaining

region is where the candidate is not hired and the outside option (a1, a2) is given to the agents.

Lemma 1. For T = 1, if a quasi-deterministic mechanism, Q, is incentive compatible, then the (only)

stage mechanism q (·|∅) must be binary with outside option (v?1 , v
?
2).

The intuition for Lemma 1 is as follows. Note that in each of the six binary stage mechanisms,

whenever there is a threshold above which the candidate is hired and below which the candidate is not,

the threshold value must be v?1 for agent 1 and v?2 for agent 2. This is because, in the last period, if

the candidate is still not hired, the agents get (v?1 , v
?
2) in period T + 1. For an agent and a fixed report

from the other agent, if the mechanism always hires the candidate or never hires the candidate, this

agent will be indifferent between reporting any value, and as a result, she will not misreport. Otherwise,

if the mechanism hires the candidate when she reports a value lower than the outside option, she will

misreport a higher value and obtain the outside option instead; and if the mechanism does not hire the

candidate when she reports a value higher than the outside option, she will misreport a lower value to
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v1,t

v2,t

v v̄
v

v̄

a1

a2

q = 1

q = 0
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v1,t
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v v̄
v

v̄
q = 1

q = 0
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v1,t

v2,t

v v̄
v

v̄
q = 1

Constant at 1

v1,t

v2,t

v v̄
v

v̄
q = 1

q = 0

a1

Dictator for agent 1

v1,t

v2,t

v v̄
v

v̄
q = 1

q = 0

a2

Dictator for agent 2

v1,t

v2,t

v v̄
v

v̄

q = 0

Constant at 0

Figure 1.3: All six binary stage mechanisms

get the candidate hired. Therefore, the only incentive-compatible mechanism hires the candidate if and

only if an agent reports a value higher than the outside option.

1.3.2 Dynamic Implementation

In this subsection, I show how the dynamic problem can be reduced to a static one but with more

than one possible outside options. I then state a monotonicity condition as a characterization of all

quasi-deterministic incentive-compatible mechanisms in this environment.

An incentive-compatible grand mechanism consists of a collection of incentive-compatible stage mech-

anisms, one after each history vt−1, with continuation value pairs for all reports in the rejection re-

gion, {vt : q (vt) = 0}, where each continuation value pair corresponds to some sequence of incentive-

compatible stage mechanisms in periods t+ 1, t+ 2, ..., T.

Given a stage mechanism q
(
·|vt−1

)
and the report of every agent other than i, define the following

threshold function,

Ri (v−i,t) = inf {vi,t : q (vt) = 1} , (1.1)

with the convention that inf ∅ =∞.
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For deterministic stage mechanisms, there must thresholds (R1, R2) such that the candidate is hired

if and only if an agent reports a value above the threshold. By incentive compatibility, the continuation

value function must be constant whenever the value observed is below the threshold, since if it is not, an

agent can misreport and obtain a different, and possibly higher, continuation value. This observation is

stated as the following lemma.

Lemma 2. A quasi-deterministic mechanism, Q, is incentive compatible if and only if after every history

vt−1, for each i ∈ {1, 2}, and every v−i,t ∈ [v, v̄],

q (vt) =

 0 if vi,t < Ri (v−i,t)

1 if vi,t > Ri (v−i,t)
,

and for every vt = (vi,t, v−i,t) such that q (vt) = 0,

wi,t+1

(
Q; vt−1, vt

)
is independent of vi,t, and,

wi,t+1

(
Q; vt−1, vt

)
= Ri (v−i,t) if Ri (v−i,t) 6=∞.

The property is stated recursively: the payoff wi,t+1 is the payoff from some sequence of stage

mechanisms in periods t+ 1, t+ 2, ...T , and those stage mechanisms also satisfy the above conditions.

v1,t

v2,t

v v̄
v

v̄
q = 1

q = 0

a1

r2

r1

a2

v1,t

v2,t

v v̄
v

v̄

R1 (x)

R2 (y)

y

x

z

R1 (v2,1)

Figure 1.4: Example of a stage mechanism that is possibly incentive compatible

An example of a stage mechanism that satisfies the condition of Lemma 2 is depicted in the diagram

on the left-hand side of Figure 1.4. According to the first part of Lemma 2, the acceptance region has
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the monotonicity property: if the candidate is accepted at some value pair vt, he is also accepted at the

value pairs that dominate vt.

The continuation values for agent 1 along the line v2,t = z in the diagram on the right-hand side of

Figure 1.4 are constant; for example,

w1,t+1

(
vt−1, (v1,t, z)

)
= a1 ∀ v1,t ∈ [v, v̄] .

If continuation values for agent 1 are not the same along this line, then the type of agent 1 who has a

value that leads to a lower continuation value will misreport and get a different and higher continuation

value.

The continuation values of agent 1 along v2,t = x in the diagram on the right-hand side of Figure 1.4

are equal to the lowest valuation for which the candidate is accepted R1 (x), or,

w1,t+1

(
vt−1, (v1,t, x)

)
= R1 (x) ∀ v1,t such that q (v1,t, x) = 0.

Not only must the continuation value be constant for every v1,t, it must be equal to R1 (x), because if

the continuation value is higher, say R1 (x) + δ, then the type of agent 1 with value R1 (x) +
δ

2
will have

an incentive to misreport a lower value and delay hiring to get a higher continuation value. Similarly,

if the continuation value is lower, say R1 (x) − δ, then an agent 1 observing R1 (x) − δ

2
will have an

incentive to misreport a higher value to get the candidate hired in the current period.

Similar requirements apply to agent 2 along the vertical line segments in the diagram. For example,

the continuation value at the point (x, y) is fixed for both players at,

wt+1

(
vt−1, (x, y)

)
= (R1 (y) , R2 (x)) .

1.3.3 Linking Decisions

The principal can link payoffs over time by using mechanisms that are history dependent. In this

subsection, I demonstrate, with two examples, that such mechanisms can lead to Pareto improvements

over history-independent ones.

As demonstrated in Figure 1.4, there are many incentive-compatible stage mechanisms in periods

1, 2, ..., T − 1 that look different from the ones in the last period, T . A key reason that more allocation

rules are implementable is the linking of decisions: the principal can use different randomizations among

stage mechanisms after different reports to punish or reward the agents. I call these mechanisms history-
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dependent mechanisms.

Definition 4. A grand mechanism is history independent if the distributions over the stage mechanisms

after any two histories with the same length are the same, that is, if

q (·|vt) = q (·|ṽt) for every vt, ṽt ∈ Vt, and every t ∈ {1, 2, ..., T}.

In general, if the principal is restricted to the use of history-independent mechanisms, then every

stage mechanism in every period must be binary. This observation is stated in the following corollary to

Lemma 1.

Corollary 1. If a quasi-deterministic incentive-compatible mechanism is history independent, then the

stage mechanisms chosen with strictly positive probabilities after every history must be binary.

Proof. After every history vt, only one continuation value is allowed in a history-independent mechanism,

because there is only one sequence of stage mechanisms in periods t+ 1, t+ 2, ..., T . Then, every period

is similar to the last period, with the exception that the outside option may differ from (v?1 , v
?
2). The set

of stage mechanisms that is incentive compatible with a single outside option is the set of binary stage

mechanisms for that outside option.

The example below with T = 2 illustrates the difference between a history-dependent and a history-

independent mechanism.

v1,t

v2,t

v v̄
v

v̄
q = 1

0

0

(Const 0)

(0, 0)

(Const 0)

(0, 0)

(Const 0)

(0, 0)

v1,t

v2,t

v v̄
v

v̄
q = 1

a1

a2

(Const 0)

(0, 0)

(Dict 1)

(a1, 0)

(Dict 2)

(0, a2)

a2 = E [max {v2,2, 0}]

a1 = E [max {v1,2, 0}]

Figure 1.5: History independent (left) vs dependent (right) unanimity in period 1

Example 1. Suppose the value distributions are symmetric, the outside option is v? = (0, 0), and

the stage mechanism in period 1 involves symmetric unanimity rules. The two choices for the stage

mechanisms in period 2 are

1. constant 0 (or unanimity or reverse unanimity) after all histories in which the candidate is not

hired in period 1 or,
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2. dictatorship by agent 1 after histories in which the candidate is not hired because agent 1 reports

a value lower than a1 but agent 2 reports a value higher than a2; dictatorship by agent 2 after

histories in which the candidate is not hired because agent 2 reports a value lower than a2 but

agent 1 reports a value higher than a1; and constant 0 in period 2 after histories in which the

candidate is not hired because both agents report values lower than their respective ai.

These two mechanisms are depicted in the diagrams in Figure 1.5. Mechanism (1) is history inde-

pendent and mechanism (2) is history dependent. Both diagrams depict the unanimity stage mechanism

in period 1, and the name of the stage mechanism and its resulting continuation value pair from period

2 is written in each region in which that continuation mechanism is used.

Note that a1 = E [max {v1,2, 0}] and a2 = E [max {v2,2, 0}] because the property in Lemma 2 must

be satisfied and the (E [max {v1,2, 0}] , 0) and (0,E [max {v2,2, 0}]) are the continuation value generated

by the two dictator stage mechanisms in the second period.

In the next example, I show that there are rules that are not binary and give both agents higher

payoffs than any binary rules.

v1,t

v2,t

- v̄ v̄
- v̄

v̄
q = 1

q = 0

(x, x)

(x, x)

(−x, x)

(x, x)

(x, x)

(x,−x)

−x

−x

x

−x

v1,t

v2,t

- v̄ v̄
- v̄

v̄
q = 1

q = 0

(x, x)

(x, x)

(x, x)

(x, x)

(x, x)

(x, x)

(x, x)

(x, x)

−x

−x

x

−x

Figure 1.6: A mechanism, not binary, (left) that yields higher payoffs for both agents than the binary
mechanism (right)

Example 2. Suppose the values in some period t < T are independently piecewise uniformly distributed

such that the probability in each of the nine rectangular regions in the diagram on the left-hand side of

Figure 1.6 is
1

9
. I assume that in period t+1, the highest possible symmetric payoff pair that corresponds

to some incentive-compatible mechanism is (x, x). For simplicity, let v = −v̄ and suppose x <
1

7
v̄.
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The difference in period t agent i payoff from the two stage mechanisms in Figure 1.6, after the same

history vt−1, is,

wi,t
(
Qleft; vt−1

)
− wi,t

(
Qright; vt−1

)
=

1

9

(
−x+

x+ v̄

2

)
− 1

9
(2x+ x)

>
1

9

(
−x+

x+ 7x

2

)
− 1

9
(2x+ x)

= 0.

It can be shown that this stage mechanism yields higher payoff for both agents than do the other

symmetric binary stage mechanisms, including the reverse unanimity and constant rules. In the next

section, I show that this observation is not a coincidence and that all Pareto optimal stage mechanisms

have the same shape as the one depicted in the diagram on the left-hand side of Figure 1.6.

1.4 Ternary Mechanisms

This section presents the main result of the paper. I start by defining ternary mechanisms, an impor-

tant class of mechanisms with a very simple interpretation. The main result shows that any quasi-

deterministic mechanism can be constructed by randomization among ternary stage mechanisms. The

proof is divided into two steps. In the first subsection, I show that every Pareto optimal stage mechanism

must be ternary. In the second subsection, I show that the rest of the boundary of the set of payoffs that

can be generated by quasi-deterministic incentive-compatible mechanisms, that is not Pareto optimal,

consists of only randomizations among binary mechanisms. The main result is stated and discussed in

the last subsection.

Definition 5. A stage mechanism, q, is ternary if there are a1, r1, a2, r2, where v ≤ ai ≤ ri ≤ v̄ for each

i ∈ {1, 2} such that,

q (vt) =

 0 if vi,t < ai for some i or ai ≤ vi,t < ri for all i

1 if vi,t > ri for some i and vi,t > ai for all i
.

Figure 1.7 illustrates a typical ternary stage mechanism. The continuation values are placed in each

rectangular region instead of the names of the continuation stage mechanisms from the next period. For

general T > 2, the complete sequence of stage mechanisms after the current period is irrelevant and

difficult to state explicitly; therefore, I write only the pair of continuation values, such as (r1, r2), in
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v1,t

v2,t

v v̄
v

v̄

(r?1 , r
?
2)

(r1, r
?
2)

(a1, r
?
2)

(r?1 , r2)

(r1, r2)

(r?1 , a2)

q = 1

a1

r2

r1

a2

Figure 1.7: An example of a ternary stage mechanism

each rectangular region. This means that if the agents report vt in this region, the candidate will not

be hired and a sequence of stage mechanisms that results in payoff wt
(
Q; vt−1

)
= (r1, r2) will be used

in periods t+ 1, t+ 2, ..., T . As shown in Figure 1.7, the continuation values without a star are fixed due

to Lemma 2, and the values with a star simply examples of possible continuation values.

Ternary stage mechanisms are voting mechanisms in which each agent can cast one of three votes:

veto, approve, or recommend. Every agent can veto the candidate, and in order to hire the candidate,

the principal needs at least one person to recommend the candidate. In particular, this voting rule does

not hire the candidate if both agents approve and neither recommends. Each agent has three intervals

separated by ai and ri, the smallest (lower than ai) where the agent can veto the candidate, the largest

(higher than ri) where the agent recommends and the candidate is hired as long as the other agent does

not veto, and the one in the middle where the candidate is hired only when the other agent recommends.

1.4.1 Pareto Optimal Mechanisms

In this subsection, I define Pareto optimal mechanisms as the ones that are restricted Pareto optimal

within the set of quasi-deterministic incentive-compatible mechanisms. I briefly explain why if a stage

mechanism is not ternary after some history, then it is Pareto dominated by one that is ternary after

the same history.

Definition 6. For incentive-compatible mechanisms Q and Q̃, the mechanism Q Pareto dominates Q̃
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after history vt−1 if

wi,t
(
Q; vt−1

)
≥ wi,t

(
Q̃; vt−1

)
for each i ∈ {1, 2} ,

with strict inequality for at least one agent.

An incentive-compatible mechanism, Q, is Pareto optimal after history vt−1, if it is not Pareto

dominated by any other incentive compatible mechanism, Q̃, after the same history vt−1.

Lemma 3. If a stage mechanism is Pareto optimal after some history, then it is payoff-equivalent to a

randomization among ternary stage mechanisms after the same history.

v1,t

v2,t

v v̄
v

v̄
q = 1

q = 0

a1

r2

r1

a2

v1,t

v2,t

v v̄
v

v̄

(−,−)

(r1,−)

(a1,−)

(−, r2)

(r1, r2)

(−, a2)

q = 1

a1

r2

r1

a2

Figure 1.8: An arbitrary mechanism (left) and an ternary mechanism that Pareto dominates it (right)

For an arbitrary incentive-compatible stage mechanism like the one in the diagram on the left-hand

side of Figure 1.8, I define ai and ri as follows:

ai = sup
vi,t

{vi,t : q (vi,t, v−i,t) = 0 for all v−i,t ∈ V−i} , (1.2)

If agent i observes a value lower than ai, the candidate will not be hired, regardless of what value

the other agent reports.

ri = lim
ε→0+

Ri (a−i + ε) , (1.3)

If agent i observes a value higher than ri, the candidate will be hired as long as the other agent

reports a value higher than a−i. Recall that Ri is the threshold function defined in Equation 1.1.
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In the case in which the acceptance region is closed,

ri = Ri (a−i) <∞. (1.4)

I call ai the approval threshold and ri the recommendation threshold for an agent i. When agent i

observes a value lower than ai, the candidate will never be hired for any value the other agent reports,

meaning agent i vetoes hiring. When agent i observes a value higher than ri, the candidate will be

hired as long as the other agent does not veto, meaning agent i recommends hiring. When both agents

approve but none recommends, the stage mechanism can choose an arbitrary hiring rule such as the one

in the left-hand-side diagram in Figure 1.4.

I compare the original stage mechanism in the diagram on the left-hand side of Figure 1.8 with one

in which the candidate is never hired in the region [a1, r1]× [a2, r2] on the right-hand side of Figure 1.8.

The latter stage mechanism is ternary. In the ternary mechanism, when v2,t is between a2 and r2, agent

1 gets constant continuation value a1 if the candidate is not hired, whereas in the original mechanism,

agent 1 gets continuation values that are lower than or equal to a1 whenever she has a value lower than

a1. When v2,t is lower than a2 or higher than r2, the ternary mechanism yields the same expected payoff

for agent 1 by construction.

1.4.2 Non-Pareto Optimal Mechanisms

The boundary of the set of continuation values that correspond to some incentive-compatible mechanism

consists of Pareto optimal mechanisms and the ones that are the worst for one agent fixing the payoff

of the other agent. In this subsection, I explain why the part of the boundary that is not Pareto

optimal is made up of ternary mechanisms and conclude that every incentive-compatible mechanism is

payoff-equivalent to some randomization among ternary mechanisms.

For an incentive-compatible mechanism, Q, it is on the non-Pareto optimal boundary after history

vt−1, if for some i ∈ {1, 2}, there does not exist another incentive-compatible mechanism, Q̃, with the

property that

wi,t

(
Q̃; vt−1

)
= wi,t

(
Q; vt−1

)
and,

w−i,t

(
Q̃; vt−1

)
< w−i,t

(
Q; vt−1

)
.

The shaded region in Figure 1.9 represents a set of continuation values that are achievable by some

incentive-compatible mechanisms. The Pareto optimal boundary is highlighted, and the remaining
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v1,t

v2,t

v v̄
v

v̄
Pareto optimal

non-Pareto

non-Pareto

Figure 1.9: Boundary of a set of continuation values that corresponds to some incentive-compatible
mechanism

boundary is the non-Pareto optimal boundary.

Lemma 4. If the grand mechanism is on the non-Pareto optimal boundary after some history, then the

stage mechanism after that history is payoff-equivalent to a randomization among binary stage mecha-

nisms after the same history.

I show that for an arbitrary stage mechanism like the one shown in Figure 1.8, a binary mechanism

such as the one depicted in the left-hand-side diagram in Figure 1.10, with carefully constructed contin-

uation value pairs in each rectangular region, results in a larger payoff for one agent but a smaller one

for the other agent. Intuitively, the stage mechanism in the diagram is close to the dictator mechanism

for agent 1, so it leads to a payoff that is higher for agent 1 and lower for agent 2. A ternary mechanism

depicted in the left-hand side diagram in Figure 1.10 results in a smaller payoff for both agents. As

explained at the end of the previous subsection, when both agents approve, never hiring the candidate

is better for both agents than sometimes hire and sometimes not. For the same reason, always hiring is

worse for both agents.

Theorem 1. For every quasi-deterministic incentive-compatible mechanism, Q, there is a mechanism

Q̃ that satisfies,

1. Every stage mechanism of Q̃ is ternary, and

2. Q is payoff-equivalent to Q̃.
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v1,t

v2,t

v v̄
v

v̄

(−,−)

(−,−)

(a1,−)

(−, r2) (−, r2)

(−, r2)

q = 1

a1

r2

v1,t

v2,t

v v̄
v

v̄

(−,−)

(a1,−)

(a1,−)

(−, a2) (−, a2)

q = 1

a1

a2

Figure 1.10: A binary mechanism better for 1 and worse for 2 (left) and a binary mechanism worse for
both (right)

The result follows directly from Lemma 3 and Lemma 4, since the best and worst payoff for an agent

are randomizations between ternary stage mechanisms, and this result applies to every agent and the

stage mechanism after every history. Theorem 1 implies that a principal can use only ternary mechanisms

to obtain every implementable payoff for the agents.

1.5 Discussion

In this section, I discuss possible extensions of the model.

The assumptions on the distributions over time are imposed for simpler presentation in the main text

and the proofs, and they can easily be relaxed without significantly changing the proofs. In particular, the

independence assumption is never used in the proofs due to the simplified definition of implementability

used in the paper. However, a more complex definition of dynamic ex-post incentive compatibility should

be used in the case with correlated values over time.

The definition of binary stage mechanisms can easily be extended to problems with more than two

agents. These binary stage mechanisms remain the only incentive-compatible ones in the static case and

in the last period for problems with N > 2 agents. The proofs of Lemma 1 and Corollary 1 applies

directly to the general N agent problems. The definition of ternary stage mechanisms extend to problems

with more than two agents. Lemma 3 and Lemma 4 apply also to the general agents problems, but since

the proof requires additional notations that are complicated and do not provide additional insights, it
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is therefore not presented. However, the main result, Theorem 1, does not follow from Lemma 3 and

Lemma 4, as in the two-agent case. This is because the mechanisms from Lemma 4 do not cover the

entire non-Pareto boundary in N dimensions. Lemma 4 implies only that fixing the payoff of one agent

makes it possible to decrease the payoffs of all other agents at the same time. I conjecture that Theorem

1 holds for N agent problems but that a different approach to the proof of Lemma 4 is required.

Another restrictive assumption is the requirement to use only quasi-deterministic mechanisms. A

decomposability result similar to that provided by Pycia and Ünver [36] is required to show that any

random mechanism can first be decomposed into multiple quasi-deterministic mechanisms and then con-

structed through further randomization among ternary mechanisms. Decomposability is not obvious in

this model for even the simplest random mechanisms; therefore, I restrict attention to quasi-deterministic

mechanisms without full justification.

It is possible to characterize the Pareto frontier in very simple examples. For example, if the valuations

are independently uniformly distributed on [-1, 1], the Pareto frontier in the first period can be described

by the line segment connecting the payoffs from the dictator mechanisms where one agent is the always

the dictator in all periods. For two period problems, it is also possible to find the Pareto frontier

numerically, but it is very difficult in general to provide a characterization of the Pareto frontier. As a

result, it is also difficult to find the optimal dynamic mechanism given an objective function. They are

interesting questions that I am unable to answer at the moment and I will leave them to potential future

research.

1.6 Proofs (for the Lemmas in Section 3)

In this section, I start by stating the monotonicity condition that is necessary but not sufficient for

implementability. Then I provide the proof of Lemma 2, and I use the result to prove Lemma 1.

Lemma 5. If a grand mechanism, Q, is incentive compatible, then after every history vt−1, q
(
vt|vt−1

)
is weakly increasing in vi,t for each agent i.

Proof of Lemma 5: Let vt and ṽt be two histories that are the same except for the value for agent i in

period t, vi,t and ṽi,t, respectively, such that vi,t > ṽi,t.

Ex post implementability implies, for a stage mechanism q (·) = q·|vt−1 of Q,

q (vt) vi,t + (1− q (vt))wi,t
(
Q; vt

)
≥ q (ṽt) vi,t + (1− q (ṽt))wi,t

(
Q; ṽt

)
and ,

q (vt) ṽi,t + (1− q (vt))wi,t
(
Q; vt

)
≤ q (ṽt) ṽi,t + (1− q (ṽt))wi,t

(
Q; ṽt

)
.
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Taking the difference between the above inequalities gives the result.

(q (vt)− q (ṽt)) · (vi,t − ṽi,t) ≥ 0

q (vt)− q (ṽt) ≥ 0

Since vt and ṽt only differ in the component vi,t > ṽi,t, q is monotonic in the component vi,t for every i

and every t.

Proof of Lemma 2: Fix a grand mechanism Q and its stage mechanism after the history vt−1, q (·) =

q
(
·|vt−1

)
, recall the definition of the threshold function in Equation 1.1, Ri (v−i,t) = inf {vi,t : q (vt) = 1},

with the convention that inf ∅ =∞.

I first prove that the conditions (monotonicity on q and threshold condition on wt+1) are necessary.

Assume Q is a quasi-deterministic incentive compatible mechanism.

By Lemma 5, since q is monotonic in vi,t, and,

q (vi,t, v−i,t) =

 0 if vi,t < Ri (v−i,t)

1 if vi,t > Ri (v−i,t)
.

The continuation value for agent i for fixed v−i,t, wi,t+1

(
Q; vt−1, (vi,t, v−i,t)

)
, must be constant for

all values vi,t in the rejection region {vt : q (vt) = 0}. If not, the agent could always find it optimal

to report the valuation with the largest possible continuation value. From now on, fix v−i,t and let

wi,t+1

(
Q; vt−1, (vi,t, v−i,t)

)
= c be the constant continuation value.

For an agent observing vi,t < R (v−i,t), incentive compatibility implies reporting vi,t is preferred to

reporting another v̂i,t > Ri (v−i,t) to get the allocation q = 1, meaning,

c ≥ vi,t.

This is true for every vi,t < R (v−i,t),

c ≥ Ri (v−i,t) .

For an agent observing vi,t > Ri (v−i,t), incentive compatibility implies reporting vi,t is preferred to
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reporting another v̂i,t < Ri (v−i,t) to get the allocation q = 0, meaning,

c ≤ vi,t.

This is true for every vi,t > R (v−i,t),

c ≤ Ri (v−i,t) .

Therefore,

c = Ri (v−i,t) ,

and,

wi,t+1

(
Q; vt−1, (vi,t, v−i,t)

)
= Ri (v−i,t) for each vi,t such that q (vi,t, v−i,t) = 0.

Now I prove that the monotonicity and threshold conditions are sufficient. Fix v−i,t and assume q is a

stage mechanism that satisfy these conditions.

For an agent i with vi,t < R (v−i,t), reporting v̂i,t results in payoff,

wi,t
(
Q; vt−1

)
=


Ri (v−i,t) if v̂i,t = vi,t

Ri (v−i,t) if v̂i,t 6= vi,t, v̂i,t ≤ R (v−i,t)

vi,t if v̂i,t > R (v−i,t)

.

Since vi,t < Ri (v−i,t), it is optimal to report truthfully.

For an agent i with vi,t > R (v−i,t), reporting v̂i,t results in payoff,

wi,t
(
Q; vt−1

)
=


vi,t if v̂i,t = vi,t

vi,t if v̂i,t 6= vi,t, v̂i,t > R (v−i,t)

Ri (v−i,t) if v̂i,t ≤ R (v−i,t)

.

Since vi,t > Ri (v−i,t), it is optimal to report truthfully.

Therefore, truthful reports are optimal, q is incentive compatible.
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Proof of Lemma 1: Fix a grand mechanism, Q. Since for any history vT ∈ VT,

wi,T+1

(
Q; vT

)
= v?i ,

by Lemma 2, for any v−i,T , either q
(
vi,T , v−i,T |vT−1

)
is constant in vi,T or,

Ri (v−i,T ) = v?i .

By Definition 3, these stage mechanisms are binary with outside option v?i for agent i.

1.7 Proofs (for the Lemmas and Propositions in Section 4)

In this section, I start by defining some shorthand notations for the proofs in this section and some

preliminary observations that simplify the shapes and continuation values of an incentive compatible

mechanism. Then, I prove Lemma 3 and Lemma 4. Theorem 1 follows directly from Lemma 3 and

Lemma 4.

From now on, I am going to fix the grand quasi-deterministic incentive compatible mechanism Q,

period t and history vt−1. To simplify the subsequent notation, I write,

q (vt) = q
(
vt|vt−1

)
.

I also write,

wt+1 (vt) = wt+1

(
Q; vt−1, vt

)
,

and,

wt = wt
(
Q; vt−1

)
.

I define the following constants and sets, I assume the acceptance region {vt : q (vt) = 1} is closed

for these definitions.

1. Recall from Equation 1.2 that the approval threshold , ai, is the threshold below which the agent

i has veto power: if vi,t < ai, the candidate is vetoed by i and will never be hired for any value of
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v−i,t,

ai = sup
vi,t

{vi,t : q (vi,t, v−i,t) = 0 for all v−i,t ∈ [v, v̄]} .

2. The non-threshold region for agent i, is the set of v−i,t such that the candidate is never hired for

any value of vi,t,

{v−i,t : q (ṽi,t, v−i,t) = 0 for all ṽi,t ∈ [v, v̄]} = [v, a−i) .

The average non-threshold continuation value , ci, is the expected continuation value within the

non-threshold region for agent i,

ci = E [wi,t+1 (vi,t, v−i,t) |v−i,t < ai] .

3. The definition for the recommendation threshold , ri, is simplified from Equation 1.4 due to the

assumption that the acceptance region is closed,

ri = Ri (a−i) .

One useful relation due to the definition of these constants is,

ai ≤ Rv−i,t
≤ ri for all v−i,t ≥ a−i. (1.5)

Then, I state an corollary to Lemma 2 that makes computation easier in all the following proofs.

Corollary 2. Fix a history vt−1 and a stage mechanism of a quasi-deterministic incentive compatible

Q after this history, q (·) = q
(
·|vt−1

)
,

E [max {vi,t, Ri (v−i,t)} |v−i,t ≥ a−i] · P {v−i,t ≥ a−i}+ ci · P {v−i,t < a−i} .

Proof of Corollary 2: It follows directly from Lemma 2.

In the course of this section, I will construct alternative stage mechanisms with new continuation

values. I say a continuation value is incentive compatible if they can be implemented in an incentive

compatible quasi-deterministic grand mechanisms.
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As an example, I show the following Compactness Lemma that ensures that the acceptance region

is closed.

Lemma 6. There exists an incentive compatible stage mechanism q̃, with incentive compatible continu-

ation values, that is payoff equivalent to q, such that,

{vt : q̃ (vt) = 1} is closed .

Recall that payoff equivalence in this section means w̃t = wt where w̃t is the continuation value of

mechanism that has q̃ after history vt−1 in place of q.

Proof. Define q̃ such that the set {vt : q̃ (vt) = 1} is the closure of the set {vt : q (vt) = 1}. Payoff

equivalence is due to continuity and full support property of the value distributions.

The only issue is how to define the continuation payoffs for player i when the other player says ai.

But use the continuity and just take the limit of continuation values when v−i > ai.

Also, I show the following Flattening Lemma that ensures that continuation values in the non-

threshold region is constant.

Lemma 7. There exists an incentive compatible stage mechanism q̃, with incentive compatible continu-

ation values, that is payoff equivalent to q, such that,

w̃t+1 (vi,t, v−i,t) = ci for all v−i,t < a−i.

Proof of Lemma 7: Let q̃ be the stage mechanism from replacing the continuation value of agent i in q

in the non-threshold region v−i,t < a−i by ci.

I divide the proof into three main parts.

1. q̃ is incentive compatible.

2. q̃ payoff equivalent to q.

Part (1) There are two types of new continuation values that is different from the ones used in q.

1. (ci, R−i (vi,t)) from the region vi,t ≥ ai and v−i,t < a−i,

2. (ci, c−i) from the region vi,t < ai and v−i,t < a−i.
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Fix ṽi,t ≥ ai, R−i (ṽi,t) is finite due to the definition of ai.

(ci, R−i (ṽi,t)) = (E [wi,t+1 (vi,t, v−i,t) |v−i,t < a−i] , R−i (ṽi,t))

= (E [E [wi,t+1 (vi,t, v−i,t) |v−i,t < a−i] , w−i,t+1 (ṽi,t, v−i,t))

= E [wt+1 (ṽi,t, v−i,t) |v−i,t < a−i] .

The second equality is due to Lemma 2 which states that wi,t+1 (vi,t, v−i,t) is constant in vi,t in the

non-threshold region [v, a−i).

Similarly,

(ci, c−i) = (E [wi,t+1 (vi,t, v−i,t) |v−i,t < a−i] ,E [w−i,t+1 (vi,t, v−i,t) |vi,t < a−i])

= E [wt+1 (vi,t, v−i,t) |vi,t < a−i, v−i,t < a−i] .

The second equality is due to Lemma 2 which states that wi,t+1 (vi,t, v−i,t) is constant in vi,t in the

non-threshold region [v, a−i).

Therefore, (ci, R−i (vi,t)) and (ci, c−i) are the expected value other continuation value pairs so they

are incentive compatible too. Since q̃ is the same as q, so incentive compatible of q̃ follows from the

incentive compatibility of q.

Part (2) Note that,

c̃i = E [w̃i,t+1 (vi,t, v−i,t) |v−i,t < a−i]

= E [ci|v−i,t < a−i]

= ci.

I check q̃ is payoff equivalent to q using Corollary 2,

w̃i,t = E
[
max

{
vi,t, R̃i (v−i,t)

}
|v−i,t ≥ a−i

]
· P {v−i,t ≥ a−i}+ c̃i · P {v−i,t < a−i}

= E [max {vi,t, Ri (v−i,t)} |v−i,t ≥ a−i] · P {v−i,tv−i,t ≥ a−i}+ ci · P {v−i,t < a−i}

= wi,t.

Lemma 8. Ternary stage mechanisms with continuation values described in diagram on the right of
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Figure 1.11: Mechanism q̃

Figure 1.11 are incentive compatible as long as the continuation values are incentive compatible.

Proof. It follows directly from Lemma 2.

In the following proofs, by Lemma 6 and Lemma 7, without loss of generality, assume the acceptance

region of q is closed and continuation value for each agent i in its non-threshold region v−i,t ∈ [v, a−i) is

constant at ci. Let the continuation values and the shape of the acceptance region of q be ones as in .

Proof of Lemma 3: Consider a ternary stage mechanism, q̃, with the thresholds ai, ri with continuation

values specified in .

I divide the proof into three main parts.

1. q̃ is incentive compatible.

2. q̃ Pareto dominates q.

Part (1) I only need to show that the continuation values are incentive compatible, the rest follows

from Lemma 8. There are three types of new continuation values that is different from the ones used in

q.

1. (ri, r−i) in the region aj ≤ vj,t < rj for both j ∈ {1, 2},

2. (ri, c−i) in the region vi,t < ai and a−i ≤ v−i,t < r−i.
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(ri, r−i) = (Ri (a−i) , R−i (ai))

= wt+1 (ai, a−i) ,

and fix ai ≤ vi,t < ri,

(ri, c−i) = (Ri (a−i) , c−i)

= wt+1 (vi,t, a−i) ,

are both incentive compatible continuation values due to implementability of q.

Part (2) I use Corollary 2 to compare q̃ and q.

w̃i,t − wi,t

= E
[
max

{
vi,t, R̃i,t (v−i,t)

}
−max {vi,t, Ri,t (v−i,t)} |v−i,t ≥ a−i

]
· P {v−i,t ≥ a−i}

+ (c̃i − ci) · P {v−i,t < a−i}

= E [max {vi,t, ri} −max {vi,t, Ri,t (v−i,t)} |v−i,t ≥ a−i] · P {v−i,t ≥ a−i}

≥ E [max {vi,t, ri} −max {vi,t, ri} |v−i,t ≥ a−i] · P {v−i,t ≥ a−i}

= 0.

The inequality is due to the observation Equation 1.5.

Therefore, q is Pareto dominated by q̃.

Proof of Lemma 4: Consider two other stage mechanisms qmin and qmax in place of q after history vt−1,

where qmax is the binary mechanism with thresholds (ai, r−i) and qmin is the binary mechanism with

thresholds (ai, a−i), and with continuation values specified in Figure 1.12. I add superscript min and

max to denote the modified recommendation thresholds,

rmini = ai,

rmin−i = r−i,
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Figure 1.12: Mechanism qmin

and,

rmaxi = ai,

rmax−i = a−i.

with continuation values specified in .

I divide the proof into two parts.

1. qmin and qmax are incentive compatible.

2. A randomization between Qmin and Qmax results in the same continuation value for i and is a

smaller continuation value for −i.

Part (1) The continuation values are incentive compatible for similar reasons as the continuation

values of q̃ are incentive compatible in the proof of Lemma 3. The rest follows from Lemma 8.

Part (2) There are three things to show.

1. qmin is worse than q for every agent,

2. qmax is better than q for i,

3. qmax is worse then q for −i.

I use Corollary 2 for all three comparisons.
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Comparison (1) : For every agent j ∈ {1, 2},

wj,t − wminj,t

= E
[
max {vj,t, Rj,t (v−j,t)} −max

{
vj,t, R

min
j,t (v−j,t)

}
|v−j,t ≥ a−j

]
· P {v−j,t ≥ a−j}

+
(
cminj − cj

)
· P {v−j,t < a−j}

= E [max {vj,t, Rj,t (v−j,t)} −max {vj,t, aj} |v−j,t ≥ a−j ] · P {v−j,t ≥ a−j}

≥ E [max {vj,t, aj} −max {vj,t, aj} v−j,t ≥ a−j ] · P {v−j,t ≥ a−j}

= 0.

The inequality is due to the observation Equation 1.5.

Comparison (2) : For agent i,

wmaxi,t − wi,t

= E
[
max

{
vi,t, R

max
i,t (v−i,t)

}
−max {vi,t, Ri,t (v−i,t)} |v−i,t ≥ a−i

]
· P {v−i,t ≥ a−i}

+ (cmaxi − ci) · P {v−i,t < a−i}

= E [max {vi,t, ri} −max {vi,t, Ri,t (v−i,t)} |v−i,t ≥ a−i] · P {v−i,t ≥ a−i}

≥ E [max {vi,t, ri} −max {vi,t, ri} |v−i,t ≥ a−i] · P {v−i,t ≥ a−i}

= 0.

The inequality is due to the observation Equation 1.5.

Comparison (3) : For agent −i,

w−i,t − wmax−i,t

= E [max {v−i,t, R−i,t (vi,t)} −max {v−i,t, Rmax−i,t (vi,t)} |vi,t ≥ ai] · P {vi,t ≥ ai}

+
(
cmaxj − cj

)
· P {vi,t < ai}

= E [max {vj,t, Rj,t (v−j,t)} − aj |ai ≤ vi,t < ri] · P {ai ≤ vi,t < ri}

≥ E [max {vj,t, aj} − aj |ai ≤ vi,t < ri] · P {ai ≤ vi,t < ri}

≥ 0.

The first inequality is due to the observation Equation 1.5. Note that this abuses Corollary 2 to since

the non-threshold regions are not the same.
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Therefore, there is a randomization between qmin and qmax such that the continuation value for i is

the same and lower for agent −i.

Proof of Theorem 1: Since binary mechanisms in Lemma 4 are ternary and the set −i is a singleton, the

result follows from Lemma 4 and Lemma 3.



Chapter 2

School Allocation Problem with

Observable Characteristics

2.1 Introduction

The literature on school choice studies the problem of how to allocate students into schools. A typical

problem includes students with different preferences, and possibly schools with different preferences or

priorities for students.

One approach to the school choice problem was introduced in Bogomolnaia and Moulin [8]. They

consider a mechanism design approach. Students report their preferences and the mechanism allocates

the students into the schools. A good mechanism satisfies certain properties such as the following,

1. Efficiency: the resulting allocation is not Pareto dominated by any other feasible allocation.

2. Envy-freeness: the resulting allocation for any individual student is not dominated by the allocation

for another student.

3. Symmetry: the resulting allocation is the same for students with the same preferences.

Bogomolnaia and Moulin [8] introduce a mechanism called the simultaneous eating mechanism that is

characterized by property (1). They also show that a special case of their simultaneous eating mechanism,

called the probabilistic serial mechanism, satisfies all three properties (1) , (2) and (3). Later, Liu and

Pycia [26] shows that for problems with full support - meaning that for every possible permutation of

the preference ordering over the schools, a strictly positive proportion of students have that preference

- a mechanism satisfies (1) , (2) and (3) if and only if it is probabilistic serial.

33
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The symmetry assumption made by Bogomolnaia and Moulin [8] has an important interpretation

as fairness criterion: no two students are treated differently. It also has a practical dimension: if the

only information about students comes from their reports, only the reports can be taken into account

by the mechanism. However, the assumption is not appropriate for many contexts. In many situations,

categories of students can be observed by the schooling authority. Examples include,

• The further the location of a student’s home to a school, the higher the transportation cost and as

a result, ceteris paribus, the less the student will prefer to go that school. The school board may

have additional data on the average amount of saving on transportation costs for each student,

and as a result have good estimate of the cardinal welfare for every feasible allocation.

• Students with higher standardized test grades may be more likely to enjoy a school with larger

libraries, more labs and better teachers. The students may not be able to evaluate the benefit from

better libraries, but the school board is able to provide a more accurate estimate of the difference

in benefit to students with different test scores.

• The more siblings a student has in a school, the higher the utility the student will obtain when

attending that school. In this case, two students with the same ordinal preference ordering may

have dramatically different cardinal utilities from attending the schools. It is impossible to obtain

from the students the cardinal utility gain from having a sibling in the same school because there

are no consistent units of measurement; however, the school board may be able to evaluate the

gain relatively consistently.

• Students with disabilities may benefit more from schools with more specialized facilities, equipment

and teachers with training for students with special needs. Similarly to the previous examples, the

school board has better information on the utility gain for these students.

In the above situations, there are important reasons to treat different students differently. For

instance, the school authority may want to reduce the transportation costs and give the priority to the

students who live in the school’s neighborhood. Similarly, the priority to schools that are accessible can

be given to students with disabilities.

In this paper, I consider a version of the school choice problem where students that belong to different

well-defined groups can be treated differently. Formally, as in Bogomolnaia and Moulin [8], I take the

mechanism design approach, and I consider stochastic allocations and compare them through first-order

stochastic dominance. I will make the assumption that although the students have cardinal utilities,
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they can only report ordinal rankings, and as a result, the mechanism is ordinal. For tractability, I also

assume continuum of students of mass 1.

I keep the efficiency assumption and replace envy-freeness and symmetry with a pair of weaker as-

sumptions that students with the same characteristic do not envy each other’s allocations and they must

be treated equally and call these assumptions within-group envy-freeness and within-group symmetry.

Consequently, I consider the class of mechanisms that satisfy the following properties:

1. Efficiency: the resulting allocation is not Pareto dominated by any other feasible allocation

2. Within-group envy-freeness: the resulting allocation for any individual student is not dominated

by the allocation for another student with the same characteristics .

3. Within-group symmetry: the resulting allocation is the same for students with the same charac-

teristics with the same preferences.

The main result is similar to the one in Liu and Pycia [26] that the only mechanisms that satisfy the

above three properties are from a class of modified versions of the probabilistic serial mechanisms from

Bogomolnaia and Moulin [8]. These mechanisms are probabilistic serial with school-specific subcapacities

for each group of students with the same characteristic. Each subcapacity specifies the maximum amount

of students with a particular characteristic that are allowed to be assigned to the school. In addition,

given data on the expected cardinal utilities from assigning students with a particular characteristic to

a specific school, I show that the cardinally efficient allocations can also be obtained from the modified

probabilistic serial mechanisms with subcapacities that can be chosen according the solution to a convex

programming problem.

Here, I briefly describe the algorithm as if the students are consuming portions of schools continuously:

for students in a specific group, schools start with sizes equal to their subcapacities and every student

starts eating her favorite school at the same unit rate until some schools are completely eaten. Then,

students start to eat their favorite among the remaining schools that are not eaten. The process ends

at time 1, and the total amount of school a student has eaten will represent the probability that she is

allocated to school.

This paper is most closely related to the literature on ordinal mechanisms for large markets developed

by Kojima and Manea [22], and Che and Kojima [9] and extended by Liu and Pycia [26]. The proofs

also use techniques from these papers. The literature attempts to find efficient, strategy-proof and

symmetric mechanisms for large markets; however, the focus of this paper deviates from the literature in

that it studies problems in which the students have observable characteristics that can provide additional
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information for the designers. As a result, this paper partially addresses the loss of welfare due to the

restriction to ordinal mechanisms mentioned in Abdulkadiroğlu, Che, and Yasuda [1] and Pycia [35] by

proposing the use of estimated cardinal utilities (from students’ observable characteristics) in addition

to the elicited ordinal preference. The results are not directly applicable to finite markets, but the

algorithm in this paper can be applied to finite markets and potentially improve welfare in high school

choice assignments in Boston or New York described in Pathak and Sethuraman [31], Abdulkadiroğlu,

Pathak, and Roth [2] and Pathak and Sönmez [32].

Section 2.2 sets up the model with ordinal preferences. Section 2.3 defines the class of modified

probabilistic serial mechanisms with subcapacities and explains why they are the only mechanisms that

are efficient, within-group envy-free and symmetric. Section 2.4 sets up the model for the planner with

cardinal preferences and explains the convex programming problem to solve for the optimal subcapacities.

2.2 Ordinal Model

In this section, I describe the model.

There is a finite set of schools L =
{

1, 2, ..., L̄
}

and a finite set of observable characteristics K ={
1, 2, ..., K̄

}
. Each student has one of these characteristics, thus the students are partitioned into groups

by their characteristics. School l has mass of cl spots and there are mass µk of students with characteristic

k. The total mass of the students is 1 and I assume that there is enough room in the schools to assign

each student,

∑
l∈L

cl ≥
∑
k∈K

µk = 1.

A student’s preference is given by a strict ordering p ∈ P(L), where P(L) is the set of all permutations

(strict orderings) of L. A type is a pair (k, p), and µ(k, p) denotes the mass of students in group k who

have preference ordering p. Let the individual students be indexed by i ∈ I = [0, 1], equipped with the

Lebesgue measure λ.

Definition 7. A (full support) profile of students is a λ-measurable function, type : I → K × P(L),

that satisfies the following conditions:

1. Type and group consistency,

∑
p∈P(L)

µ(k, p) = µk,
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where,

µ(k, p) =

∫
i∈I,type(i)=(k,p)

dλ.

2. Full support,

µ(k, p) > 0 ∀ (k, p) ∈ K × P(L).

In this definition, a profile maps the students’ names to their types, (1) states that the total mass

of students with type (k, p) is µ(k, p) and the total mass of students in group k is µk, and (2) states

that the measure of students with every possible type is strictly positive. More importantly, each profile

induces a full support distribution of types, µ, where µ(k, p) is the mass of students of type (k, p).

Definition 8. An allocation is a measurable function q : I → ∆L, where q (l; i) is the probability that

a student i ∈ I is assigned to school l. An allocation q is feasible if,

∫
i∈I

q (l; i) dλ ≤ cl.

An allocation maps each student in I to a stochastic allocation. One interpretation is that students

receive their spot randomly according the distribution q (i). Each stochastic allocation can be imple-

mented by a randomized mechanism. For fixed µk, let M be the set of all profiles and Q be the set of

all feasible allocations.

Definition 9. A mechanism is a function Q :M→Q, that maps every profile to a feasible allocation.

Next, I define ordinal efficiency using first order stochastic dominance.

Definition 10. An allocation q is dominated by q′ for student i with preference p if

∑
l′�pl

q (l′; i) ≤
∑
l′�pl

q′ (l′; i) ∀ l ∈ L,

with strict inequality for at least one l.

One allocation dominates another if it first order stochastically dominates the other allocation. The

three desired properties of an ordinal mechanism in this model are the following. I will use the notation

k : I → K to represent the function that maps a student to her group characteristics.

Definition 11. Efficiency: q (i) is not dominated by any q′ (i) for any i ∈ I.



Chapter 2. School Allocation Problem with Observable Characteristics 38

Definition 12. Within-group envy-free: q (i) is not dominated by any q (j) for any i, j ∈ I such that k (i) =

k (j).

Definition 13. Within-group symmetry: for each type (k, p), q (i) = q (j) for any i, j ∈ I such that type (i) =

type (j) = (k, p).

Within-group symmetry states that students with the same characteristics and preferences should

be assigned the same allocation. Given this assumption, I can use the notation q (l; k, p) to denote the

probability of a student with type (k, p) getting allocated the school l. Envy-freeness states that any

a student (k, p) will not prefer the allocation of another student (k, p′) for p′ 6= p. The assumption is

a weaker version of strategy-proofness. Efficiency implies that no other allocation is preferred by all

students.

In the case in which every student with the same type gets the same allocation, the notation q (l; k, p)

will be used in place of q (l; i) to denote the probability that a student with type (k, p) is assigned to

school l. Consequently, the total amount of students with type (k, p) who are assigned to school l

satisfies,

µ(k, p) · q (l; k, p) =

∫
i∈I:type(i)=(k,p)

q (l; i) dλ.

2.3 Modified Probabilistic Serial

In this section, I describe the probabilistic serial mechanism from Bogomolnaia and Moulin [8] and the

modification to include subcapacities that represent the maximum number of students with a certain

characteristic that can be allocated to each school. I also state and explain the main result that a

mechanism is efficient, within-group envy-free and within-group symmetric if and only if it is modified

probabilistic serial.

I start by briefly summarizing the mechanism in Bogomolnaia and Moulin [8]. I describe their

algorithm as if the students are consuming portions of schools continuously at a fixed rate. Schools start

with sizes equal to their capacities and every student starts eating her favorite school at rate 1 until some

schools are completely eaten. Then, students start to eat their favorite among the remaining schools

that are not eaten. The process ends at time 1, and the total amount of school a student has eaten will

represent the probability that she is allocated to school.

Then I define the collection of subcapacities
{
ckl
}
k∈K,l∈L. Subcapacity ckl represents the maximum

number of students in group k that can be assigned to school l by the algorithm. They must satisfy the
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feasibility condition,

∑
k∈K

ckl ≤ cl ∀ l ∈ L.

I modify the mechanism in Bogomolnaia and Moulin [8] in two ways.

1. Schools start with sizes equal to their capacities but are divided into subcapacities for each group

specified by
{
ckl
}
l∈L,k∈K , so the initial sizes of the schools are not equal to their actual capacities.

2. Students in one group cannot eat the portion of the schools allocated to other groups.

In this algorithm, all students with the same type get the same allocation. Therefore, within-group

symmetry is ensured. The formal descriptions of the algorithms are as follows. Before that, I define the

following function.

M (l, A) is a function that maps a school, l, and a set of available schools, A ⊆ L, to the set of

preference orderings in which the favorite school among the set A is l,

M(l, A) = {p ∈ P(L) : l � l′ ∀ l′ ∈ A \ {l}} . (2.1)

Algorithm 1. Given subcapacities
{
ckl
}
l∈L,k∈K , the probabilistic serial mechanism (PS) assigns to each

profile the allocation resulting from the following process, assuming µ is the distribution of types induced

by the given profile.

Initialize: L0
k = L, y0

k = 0 for each k ∈ K and q0 (l; k, p) = 0 for each l ∈ L, k ∈ K, p ∈ P(L),

Iteration: Assume Ls−1
k , ys−1

k , qs−1 are defined for each k. For each k,

1. For each l, find ysk (l), the earliest time at which students in group k finish consuming school l,

ysk (l) = arg min
y


∑

p∈M(l,Ls−1
k )

µ (k, p)
(
y − ys−1

k

)
+

∑
p∈P(L)

µ (k, p) qs−1 (l; k, p) = ckl

 .

2. Find ysk, the earliest time at which students in group k finish consuming any school,

ysk = min
l
ysk (l) .

3. Find F sk , the set of schools that are completely consumed by students in group k,

F sk = arg min
l
ysk (l) .
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4. Find the remaining set of available schools for students in group k,

Lsk = Ls−1
k \ F sk.

5. Find qs (l; k, p), the temporary allocation of school l for students with type (k, p), which represents

the amount of school l the students have eaten so far until the end of step s,

qs (l; k, p) = qs−1 (l; k, p) + 1p∈M(l,Ls−1
k )

(
ys − ys−1

)
.

For a full support profile, Bogomolnaia and Moulin [8] showed that probabilistic serial generates an

allocation is efficient, envy-free, symmetric, and Liu and Pycia [26] showed that an allocation is efficient,

envy-free, and symmetric if and only if it is generated by probabilistic serial. The result can be extended

to the problem with multiple groups with a similar proof to Theorem 1 in Liu and Pycia [26].

Proposition 1. An allocation, q, is efficient, within-group symmetric, and envy-free for a full support

profile that induces type distribution µ if and only if it is generated by Algorithm 1 modified probabilistic

serial with subcapacities,

ckl (µ) =
∑

p∈P(L)

µ (k, p) q (l; k, p) .

The above formula for ckl says nothing about how to choose the subcapacities in practice since they

are just one of many capacities that are compatible with the allocation q.

In particular, note that ordinal efficiency does not rely on fixing the subcapacities. The probabilistic

serial allocation is unconstrained ordinally efficient among all allocations associated with all possible

choices of subcapacities.

2.4 Cardinal Model

In this section, I introduce the model with cardinal utility functions that is ordinally consistent with

the previous model. I explain that the cardinally efficient allocation can be obtained from the modified

probabilistic serial mechanism with subcapacities which can be found as the solution to a convex (linear)

optimization problem.

The cardinal utility functions should be compatible with the preference relations from ordinal model.

Let u (i) : L → R+ be the utility function of a student i, where u (l; i) represents the utility from
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attending school l. A utility function induces a preference relation p if for every student i with the

preference p,

l �p l′ whenever u (l; i) > u (l′; i) ∀ l ∈ L.

Here, I do not need to assume the students with the same type (k, p) have the same utility function, but

since the within-group symmetry assumption requires the allocation to be the same for students with

the same type, and the welfare function uses the average utilities, I can restrict attention to using the

average utilities over the same type,

u (l; k, p) =
1

µ(k, p)

∫
type(i)=(k,p),p(u(i))=p

u (l; i) dλ,

where p (u) is the preference relation induced by the utility ranking u.

Definition 14. A utility distribution that is consistent with a preference profile µ is the set of utility

functions u (i), such that,

∫
type(i)=(k,p),p(u(i))=p

dλ = µ(k, p) ∀ k ∈ K, p ∈ P(L).

Definition 15. The allocation q? is cardinally efficient if it maximizes the average expected welfare:

q? ∈ arg max
q∈Q

∫
i∈I

∑
l∈L

u (l; i) · q (l; i) dλ.

If the mechanism is restricted to be within-group symmetric, then q? maximizes the welfare function

W (q) =
∑

(k,p)∈K×P(L)

∑
l∈L

u (l; k, p) · q (l; k, p) · µ(k, p).

Since probabilistic serial is ordinally efficient, any cardinally efficient allocation must be obtained by

probabilistic serial for some subcapacities. Therefore, I write the allocation and welfare as a function of

the subcapacities in the probabilistic serial mechanism that generates them, let c =
{
ckl
}
l∈L,k∈K , c

k ={
ckl
}
l∈L,

Wk

(
ck
)

=
∑
l∈L

u (l; k, p) q PS (c) (l; k, p)µ(k, p),
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and,

W (c) =
∑
k∈K

Wk

(
ck
)
,

where q PS (c) is the allocation generated by probabilistic serial with subcapacities c.

Proposition 2. The function W (c) is concave in c.

In order to find welfare-maximizing mechanism, I need to find the maximum of function W (c) subject

to the following linear constraints.

max
ckl ∈[0,cl]

W (c)

such that
∑
k∈K

ckl = cl

and
∑
l∈L

ckl = µk

The first constraint is the school capacity constraint requiring the subcapacities for a school for all

groups add up to the total physical capacity of the school. The second constraint is the profile constraint

requiring the subcapacities for a group from all schools add up to the total mass of the students in that

group. Both constraints hold at optimum because of the assumption that there is enough room in the

schools to allocate all the students.

The optimization can be done computationally. Proposition 2 says that function W (c) is concave in

c, hence, standard gradient methods can be used to find the maximum. One conjecture is that the choice

of c can be found easily using the differed acceptance algorithm. It is indeed the case when the number

of schools is two, and it can be shown by enumerating all possible cases. I am unable to verify at the

moment that the conjecture is correct for problems with more than two schools as there are no simple

characterization of the allocations resulted from probabilistic serial. I leave this interesting question for

future research.

2.5 Proofs

2.5.1 Proof of Proposition 1

I divide the proof into three parts, stated as the following three lemmas.

Lemma 9. Modified probabilistic serial is (ordinally) efficient.
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Lemma 10. Modified probabilistic serial is envy-free.

Lemma 11. Given a full-support profile, µ, if an allocation q is efficient, within-group envy-free and sym-

metric, then it is generated by modified probabilistic serial with constraints ckl =
∑

p∈P(L)

q (l; k, p)µ(k, p).

Lemma 9 and Lemma 10 are modified from Theorem 1 and Proposition 1 of Bogomolnaia and Moulin

[8], respectively, and Lemma 11 is modified from Theorem 1 of Liu and Pycia [26]. The modified prob-

abilistic serial mechanism is within-group symmetric by construction, so these three lemmas, together

with the full support assumption, implies Proposition 1.

Proof of Lemma 9: Suppose, for a contradiction that q is obtained by modified probabilistic serial and

it is not efficient, and q is dominated by q′.

Let (k, p1) be the student such that q (k, p1) 6= q′ (k, p1), there are l0, l1 with l0 �p1 l1, such that,

q (l1; k, p1) > q′ (l1; k, p1) ,

q (l0; k, p1) < q′ (l0; k, p1) .

Then l0 �p1 l1 and q (l1; k, p1) > 0.

Similarly, there is l1 �p2 l2 and q (l2; k, p2) > 0.

Since L is finite, there exists some cycle,

l0 �p1 l1...lR �pR l0,

such that for every r ∈ {0, 1, ..., R},

lr−1 �pr lr and q (lr; k, pr) > 0.

Take an arbitrary r, let the qs represent the partial probabilistic serial allocation at time s, and define

the following,

sr = inf
s
{s : qs (lr; kr, pr) > 0} .

Note that pr−1 /∈ Lsr−1

kr
, where the notation Lsk is introduced in step (4) of Algorithm 1 as the remaining

set of available schools for students in group k after step s. This implies sr−1 < sr.

This is true for for every r, implying s0 < s1 < ... < sR−1 < s0, which leads to a contradiction.
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Proof of Lemma 10: Fix a student (k, p) with l1 �p l2... �p lL̄, and let s1 be the earliest time at which

l1 is completely eaten, meaning,

l1 ∈ Ls1−1
k \ Ls1k .

For s ≤ s1 − 1, (k, p) ∈ M (l1, L
s
k), where M (l, A) is introduced before Algorithm 1 by Equation 2.1 as

the set of preference orderings in which the favorite school among the set A is l, and

qs1 (l1; k, p) = ys1k ≥ q
s1 (l1; k, p′) ∀ p′ 6= p.

Since l1 is completely eaten at s1, the previous relationship holds for final allocation q as well,

q (l1; k, p) ≥ q (l1; k, p′) ∀ p′ 6= p.

Now, let s2 be the earliest time {l1, l2} is completely eaten, s2 ≥ s1 and for the same reason,

q (l1; k, p) + q (l2; k, p) = ys2k ≥ q (l1; k, p′) + q (l2; k, p′) ∀ p′ 6= p.

Repeat the argument to see that q (k, p) dominates q (k, p′) for every p′ 6= p.

Proof of Lemma 11: Fix any allocation, q′, that is efficient, within-group envy-free and symmetric, and

the allocation, q1, obtained by modified probabilistic serial. Let qt denote the partial allocation at time

t ∈ [0, 1] from the probabilistic serial.

I show that for any student with type (k, p) ∈ K×P(L), any school l ∈ L, and at any time t ∈ [0, 1] , q′

dominates qt. Then, by the efficiency property of q1 from Lemma 9, q′ = q1, which concludes the proof.

Assume for a contradiction, let τ be the earliest time when q′ does not dominate qt. Using the

notations in Definition 10, for some school l and and student with type (k, p),

τ = inf

t :
∑
l′�pl

q′ (l′; k, p) <
∑
l′�pl

qt (l′; k, p)

 .

By continuity of the function qt in t, q′ dominates qt for each t ∈ [0, τ ]. In particular, at time τ , the

students with type (k, p) must be eating some school l, and,

∑
l′�pl

q′ (l′; k, p) ≥
∑
l′�pl

qτ (l′; k, p) = τ.
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Since τ the earliest time the above inequality stops holding,

∑
l′�k,pl

q′ (l′; k, p) =
∑
l′�k,pl

qτ (l′; k, p) = τ.

Now, using the full support condition, l must be the favorite object of some agent (k, p′), and,

q′ (l; k, p′) ≥ qτ (l; k, p′) = τ.

The envy-free assumption implies (k, p) does not prefer the allocation of (k, p′),

q′ (l; k, p′) ≤ τ.

Therefore,

q′ (l; k, p′) = τ.

Since school l is not completely eaten at time τ ,

q1 (l; k, p′) > τ.

Therefore, the equalities imply that (k, p′) gets less l in q′ than q1. The efficiency of q1 implies that

there is another student (k, p̂) who gets,

q′ (l; k, p̂) > q1 (l; k, p̂) .

And there is some school l̂ that is not l that student (k, p̂) prefers just more than school l,

∑
l′�p̂ l̂

q′ (l′; k, p̂) ≥
∑
l′�p̂ l̂

qτ (l′; k, p̂) ,

implying,

∑
l′�p̂ l̂

q′ (l′; k, p̂) ≥ τ − qτ (l; k, p̂) ,
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and,

∑
l′�p̂ l̂

q′ (l′; k, p̂) ≥ τ − q1 (l; k, p̂) ,

and finally,

∑
l′�p̂l

q′ (l′; k, p̂) > τ.

Comparing students (k, p′) and (k, p̂), envy-freeness of q′ leads to a contradiction.

2.5.2 Proof of Proposition 2

I prove several smaller lemmas about properties of envy-free allocations in order to prove concavity.

Lemma 12. Any convex combination of envy-free allocations is envy-free.

Lemma 13. Any inefficient envy-free allocation has an envy-free Pareto improvement.

Lemma 14. The set of envy-free allocations are closed.

Proof of Lemma 12: Consider arbitrary pair of students (k, p) and (k, p′) under two different allocations

q1 and q2.

Let p = l1 � l2 � l3... � lL̄ be the preference ranking of the first student, and define the following,

ti1 = min
t

{
t∑

s=1

q1 (ls; k, p) <

t∑
s=1

q1 (ls; k, p
′)

}

ta1 = max
t

{
t∑

s=1

q1 (ls; k, p) ≤
t∑

s=1

q1 (ls; k, p
′)

}

ti2 = min
t

{
t∑

s=1

q2 (ls; k, p) <

t∑
s=1

q2 (ls; k, p
′)

}

ta2 = max
t

{
t∑

s=1

q2 (ls; k, p) ≤
t∑

s=1

q2 (ls; k, p
′)

}

By envy-freeness, ti1 6= ta1 and ti2 6= ta2,

Consider a convex combination q0 = (α) q1 + (1− α) q2 for α ∈ [0, 1],
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For t ≤ min
{
ti1, t

i
2

}
,

t∑
s=1

q0 (ls; k, p) =

t∑
s=1

(α) q1 (ls; k, p) + (1− α) q2 (ls; k, p)

<

t∑
s=1

(α) q1 (ls; k, p
′) + (1− α) q2 (ls; k, p

′)

=

t∑
s=1

q0 (ls; k, p
′)

And for t ≥ max {ta1 , ta2},

t∑
s=1

q0 (ls; k, p) =

t∑
s=1

(α) q1 (ls; k, p) + (1− α) q2 (ls; k, p)

>

t∑
s=1

(α) q1 (ls; k, p
′) + (1− α) q2 (ls; k, p

′)

=

t∑
s=1

q0 (ls; k, p
′)

Therefore, under q0, no student strictly prefers the allocation of another student, q0 is envy-free.

Proof of Lemma 13: Consider an allocation q and another allocation q′ that (Pareto) dominates q.

For each student (k, p) and pair of schools l1 and l2, define the flow from school l1 to l2 by ∆ (l1, l2; k, p)

satisfying:

∑
l2∈L

∆ (l1, l2; k, p) = max {0, q (l1; k, p)− q′ (l1; k, p)} ,

∑
l1∈L

∆ (l1, l2; k, p) = max {0, q (l2; k, p)− q′ (l2; k, p)} ,

∆ (l1, l2; k, p) ≥ 0.

Then define another allocation q? by:

q? (l1; k, p) = q (l1; k, p)−
∑
l2∈L

1∆(l1,l2;k,p)>0 or l2�pl1 ·∆
? (l1, l2; k, p)

+
∑
l2∈L

1∆(l2,l1;k,p)>0 or l2�pl1 ·∆
? (l2, l1; k, p)
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where ∆? is defined as:

∆? (l1, l2; k, p) =

∑
(k′,p′)∈K×P(L)

∆ (l2, l1; k′, p′) · µ (k′, p′)

∑
(k′,p′):l1�p′ l2 and ∆(l1,l2;k′,p′)=0

µ (k′, p′) +
∑

(k′,p′)∈K×P(L)

∆ (l2, l1; k′, p′) · µ (k′, p′)

Note that the flows from q to q′ and the flows from q to q? are the same since the previous system for

∆ is still satisfied.

Also, q? still dominates q since,

 ∆? (l1, l2; k, p) > 0 if l1 �p l2

∆? (l1, l2; k, p) < ∆ (l1, l2; k, p) if l2 �p l1

And q? is envy-free since,

 ∆? (l1, l2; k, p) ≥ ∆? (l1, l2; k, p′) for every p′ if l1 �p l2

∆? (l1, l2; k, p) ≥ 0 if l2 �p l1

Therefore, q? is an envy-free Pareto improvement to q.

Proof of Lemma 14: Consider any sequence of allocations {qn}∞n=1 and the element-wise limit q?.

Fix any two students (k, p) and (k, p′), since qn are envy-free for each n,

∑
l�pl′

qn (l; k, p′) ≤
∑
l�pl′

qn (l; k, p) ∀ l′ ∈ L,

where ls is the s -th school in the preference ranking of student (k, p).

Then,

lim
n→∞

∑
l�pl′

qn (l; k, p′) ≤ lim
n→∞

∑
l�pl′

qn (l; k, p) ∀ l′ ∈ L,

∑
l�pl′

q? (l; k, p′) ≤
∑
l�pl′

q? (l; k, p) ∀ l′ ∈ L.

Therefore, q? is envy-free. The set is closed under limits.

Similarly, the set of Pareto improvements of any allocation is closed.

Proof of Proposition 2: Let c, c′ be two vectors of subcapacities, and q, q′ be the probabilistic allocation

with subcapacities c, c′ respectively.
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Consider allocation q0 = (α) q+(1− α) q′ and the welfare of allocation q0 is (α)W (c)+(1− α)W (c′)

If q0 can be obtained from PS with capacities (α) c + (1− α) c′, then (α)W (c) + (1− α)W (c′) =

W ((α) c+ (1− α) c′).

Suppose q0 is obtained from probabilistic serial, and since q0 is envy-free from Lemma 12, q0 is not

efficient by Proposition 1.

Let V be the set of envy-free allocations that Pareto dominates q0.

V is bounded since the set of allocations is bounded and the set of all envy-free allocations and the

set of allocations that are Pareto improvements to q0 are closed by Lemma 8. Then, V is an intersection

of two compact sets implying that V is compact.

Therefore, there is an allocation q? ∈ V that maximizes W (·).

Note that q? must be efficient because if not, by Lemma 13, there is a envy-free Pareto improvement

of q? in V which contradicts the definition that q? maximizes W (·).

q? is envy-free and efficient, implying that q? is the probabilistic serial allocation with capacity

(α) c+ (1− α) c′.

Therefore, (α)W (c) + (1− α)W (c′) ≤W ((α) c+ (1− α) c′) ,W is concave in c.

The function W(c) is non-decreasing for ckl due to the assumption that u (·) ≥ 0.



Chapter 3

Mechanism Design for Stopping

Problems with Two Actions

3.1 Introduction

In many economic situations, an agent wants to choose between two alternatives but is not required to

make the choice right away. Often, the agent can postpone the choice until later in order to either gather

more information or wait for more favorable conditions. Additionally, another party, called a principal,

has an interest in the timing and choices made by the agent and can use transfers to provide incentives.

I model such a situation as a stopping problem with two actions. The agent observes a Markov state,

decides when to stop, and upon stopping, chooses between one of the two actions. The agent’s payoffs

are a sum of an intrinsic payoff, which depend on the time, action, state, and a quasi-linear transfer

received from the principal, which depends on the time and the action choice. The goal of this analysis

is to describe the range of choice rules that can be implemented and to determine whether and how the

principal can incentivize the agent with quasi-linear transfers.

Economic applications include:

• (Job Search) A worker observes a changing demand for his services and chooses between taking

up a job, continuing to search, or leaving the market (possibly to retire, or to go back to school).

The government decides on the amount of employment insurance it offers to workers in order to

achieve its own policy goals. This example expands on the main example from Kruse and Strack

[24] by adding the possibility that the worker can choose to leave the market.

50
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• (Hypothesis Testing) The principal hires an econometrician to conduct a hypothesis test. The

econometrician performs a Bayesian sequential test of H0 vs H1. After obtaining each sample, she

can choose to reject one of the two hypotheses or obtain an additional sample. Payments are based

on sample size to incentivize the econometrician to perform the designed test.

• (Project Funding) The principal, for instance, a public authority, a government agency sponsoring

research, or a city council, is deciding which one of two projects it will invest extra resources into

and wants to hire an investigator for advice. The investment decision affects the utility of the

investigator, so the principal would like to find a payment scheme to incentivize the investigator

to report truthfully.

In the above examples, the strategies for the agent consist of:

• (A stopping rule) The stopping rule can be complicated, but it often involves a sequence of pairs of

thresholds that may vary over time. If the state falls inside the thresholds, the agent will continue;

otherwise, she stops.

• (A choice of alternative) After the agent stops, she makes a choice between the two alternatives.

The above class of strategies is defined formally as the two-sided threshold rules. I analyze the

implementability of this class of strategies.

The main result describes the necessary and sufficient conditions for the intrinsic utility and Markov

process that ensure the implementability of all two-sided threshold rules. The conditions are similar to

the single crossing condition in Kruse and Strack [24] and the monotonicity condition from Pavan, Segal,

and Toikka [33]. In addition, closed form formulas for the transfers that implement these stopping rules

can be found.

The agent’s problem has been studied since Wald (1947) and Arrow, Blackwell, and Girshick (1949)

as the optimal stopping problem. The principal’s problem, which is the focus of this analysis, is most

closely related to Kruse and Strack [24], where the principal chooses transfers to influence the stopping

rule used by the agent. Kruse and Strack [24] define a cut-off stopping rule as a strategy where the agent

stops the first time the state she privately observes is above a certain threshold. They make a single

crossing assumption (KS-SCC) that is a sufficient and necessary condition for the implementability of

cut-off rules. It requires the expected difference between utilities in consecutive periods, which they call

marginal incentives, to be weakly decreasing in the state. They also give closed form solutions for the

transfers.
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The model is also related to Pavan, Segal, and Toikka [33]. In their paper, there are multiple

agents, and each agent can choose an allocation after each period. They show that a sequence of

allocations is implementable if and only if an integral monotonicity condition holds. They also have

a stronger condition called the single crossing condition (PST-SCC), which is a sufficient condition for

implementability. PST-SCC requires the expected sums of discounted marginal utilities to be monotonic

in state. The discount factor they use is the impulse response function. They give a characterization of

the transfers but not closed form formulas for the transfers.

Due to the assumption that the agent can choose one of two actions only once, not only am I able

to simplify PST-SCC, but the conditions in this model will also hold for utility functions that are non-

monotonic in a particular way that does not satisfy KS-SCC. If the utilities are increasing in state for

one alternative and decreasing in state for the other, then these conditions imply implementability as

well.

I show that the condition of implementability can be simplified for the previously discussed examples:

• (Job Search) All stopping rules with two-sided thresholds are implementable if the expected change

in utility from choosing the same action in any two consecutive periods is weakly decreasing in the

current state.

• (Hypothesis Testing) As long as the payoff from accepting the more likely hypothesis is higher, the

Bayesian sequential test with any size is implementable.

• (Project Funding) Suppose the investigator observes a state process that is additive, the payoff is

linear in the states, and the slopes have different signs for different projects. Then, every strategy

where the investigator stops when the state is either too high or too low is implementable.

Section 2 introduces the model, Section 3 gives sufficient and necessary conditions when threshold

rules are implementable, and Section 4 provides simplifications of these conditions for examples with

special utilities or stochastic processes of the states.

3.2 Model

3.2.1 Agent’s Problem

Consider a stopping problem with two possible terminal actions. In each period t = 0, 1, ..., T , an agent

observes the state of a one-dimensional Markov process, xt ∈ [x, x̄]. Next, she chooses between three
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options: stop and choose action -1, stop and choose action +1, or continue. If the agent stops at time

τ = t and chooses qt ∈ {−1,+1}, she receives utility, ut (qt, xt).

I make the following monotonicity assumption on the utility function. It is a variation of a part of

the Spence-Mirrlees conditions that is necessary for implementability.

Assumption 1. The period t utility functions are partially differentiable with respect to x for all

t ∈ {0, 1, ..., T}, and,

∂ut (−1, x)

∂x
≤ 0 and

∂ut (+1, x)

∂x
≥ 0, ∀ x ∈ [x, x̄] .

A strategy (or decision rule) is a sequence of mappings qt : [x, x̄] → Q where Q = {−1, 0, 1} is the

set of decisions. The decision qt is independent of previous states x0, x1, ..., xt−1 because the utility only

depends on the current xt the agent observes. Each strategy induces a stopping time, which is a mapping

τ : [x, x̄]
T → {0, 1, ..., T} defined so that,

τ (x0, ..., xT ) = min {t : qt (xt) 6= 0} .

3.2.2 Implementation Problem

The principal chooses transfers, pt (−1) and pt (+1), in order to provide the agents with incentives to

pick a particular strategy (or decision rule), qt. As in Kruse and Strack [24], I only consider posted price

mechanisms. The prices only depend on the stopping time and the action the agent chooses, but not

the exact history of reports. The agent observing state xt in period t gets payoff ut (qt, xt) − pt (qt) if

she stops and makes a decision, qt ∈ {−1,+1}.

The expected utility at time 0 for the agent is,

U0 (q, x) = E [uτ (qτ (Xτ ) , Xτ )− pτ (qτ (Xτ )) |X0 = x]

where τ is the stopping time implied by the strategy q.

Definition 16. A strategy, q = {qt}Tt=0 , is implementable if there are transfers {pt}Tt=0 such that for

an agent observing state x ∈ [x, x̄] at time t = 0,

{qt}Tt=0 = arg max
{q′t}

T
t=0

E [uτ ′ (q
′
τ ′ (Xτ ′) , Xτ ′)− pτ ′ (q′τ ′ (Xτ ′)) |X0 = x] .

A strategy (with its implied stopping time) is implementable if it is possible to provide the agent
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with incentives to choose that strategy.

3.2.3 Threshold Rules

I am interested in threshold strategies where the agent stops whenever the state falls outside of a sequence

of intervals, {[at, bt]}Tt=0 .

Definition 17. A strategy, q, is a (two-sided) threshold strategy if there are sequences {at, bt}Tt=0 such

that at ≤ bt, aT = bT and,

qt =


−1 if xt ∈ [x, at)

0 if xt ∈ [at, bt]

+1 if xt ∈ (bt, x̄] .

I denote a threshold strategy with thresholds {at, bt}Tt=0 as q(a,b) . Kruse and Strack [24] uses cut-off

stopping rules with only one sequence of thresholds, and such rules are special cases where at = x .

As presented in the next section, all two-sided threshold strategies are implementable, but it is not

true that all implementable strategies have a stopping rule in the form of two-sided thresholds. For

example, with non-concave utility functions, strategies in which the agent stops when the state falls

outside multiple intervals in the same period can be implementable. Chow, Robbins, and Siegmund

[11] provides examples of such stochastic processes when the optimal stopping rule is not a two-sided

threshold strategy.

3.2.4 Stochastic Process of the States

I follow assumptions similar to Kruse and Strack [24] on the stochastic process, {Xt}Tt=0. These assump-

tions are needed for the model to be tractable.

Assumption 2. (Regular Transitions) The process {Xt}Tt=0 satisfies,

1. For any continuous φ : [x, x̄]→ R,E [φ (Xt+1) |Xt = x] is continuous in x.

2. For any weakly decreasing φ : [x, x̄]→ R,E [φ (Xt+1) |Xt = x] is non-increasing in x.

3. For any interval [a, b) ⊆ [x, x̄] ,E
[
1Xt+1∈[a,b)|Xt = x

]
> 0 for each x ∈ [x, x̄].

The continuity-preserving and monotonicity-preserving properties are used to ensure that the shape

of the value function in the future periods stays the same after taken expectations given the state of the

current period. The full support property is included to ensure the uniqueness of the representation of

a threshold rule. Without full support, multiple thresholds can be used to represent the same stopping

time.
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3.3 Implementability

Theorem 1 finds conditions under which all threshold rules are implementable.

Let Ft be the conditional cumulative distribution function of Xt given Xt−1, and ft be the conditional

density function of Xt|Xt−1 for the Markov process.

Definition 18. Define the impulse response function as,

I (xt+1, xt) = −∂Ft+1 (xt+1|xt)
∂xt

1

ft+1 (xt+1|xt)
.

The impulse response function is used in Pavan, Segal, and Toikka [33] to state their monotonicity

conditions, too. It is used as a discount factor for marginal utilities so that they can be added over time.

Theorem 2. The following are equivalent:

1. (Implementability) Every two-sided threshold rule, q(a,b) , is implementable.

2. (Monotonic Marginal Incentive Condition) The following marginal incentive function is weakly

decreasing in x for each t ∈ {0, 1, ..., T}.

E [ut+1 (s,Xt+1) |Xt = x]− ut (s, x) , for s ∈ {−1,+1}

3. (Single Crossing Condition) The following single crossing condition is satisfied for each t ∈ {0, 1, ..., T}

and x ∈ [x, x̄].

s · E
[
∂ut+1 (s,Xt+1)

∂x
I (Xt+1, Xt) |Xt = x

]
≤ s · ∂ut (s, x)

∂x
, for s ∈ {−1,+1}

Both the marginal incentive condition and the single crossing condition are sufficient to implement

any threshold rule but are not necessary to implement a particular threshold rule. They are only

necessary to implement all possible threshold rules at the same time.

The two conditions for implementability are equivalent due to a simple integration by parts. The

sufficiency of the single crossing condition (3) ⇒ (1) can be proven using results in Pavan, Segal, and

Toikka [33]. In particular, the assumptions about the utility function and the single crossing conditions

imply strong monotonicity, which is a sufficient condition for implementation from their paper. I present

an alternative proof for this specific model, which, in addition to proving implementability, also gives a

closed form formula for the transfers and contains parts that are useful for the proof of the necessity of
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the single crossing conditions in implementing threshold rules. The sufficiency of the marginal incentives

(2) ⇒ (1) for one-sided thresholds with at = x is shown in Kruse and Strack [24], and I modify and

extend their proof for two-sided thresholds, where the principal needs to prevent the agent from choosing

both actions -1 and +1 in future periods if he wants the agent to stop in the current period.

The proof for the necessity of the two conditions for implementing all threshold rules (1) ⇒ (2) or

(3) is new and does not rely on the techniques or results from Kruse and Strack [24] or Pavan, Segal,

and Toikka [33].

In order to describe these transfers, additional notations are needed.

Definition 19. Define the modified marginal incentive functions as,

zt (x) = E
[
max
s′
{ut+1 (s′, Xt+1)} |Xt = x

]
−max

s′
{ut (s′, x)} ,

z̃t (s, x) = E
[
max
s′
{ut+1 (s′, Xt+1)} |Xt = x

]
− ut (s, x) , for s ∈ {+1,−1} .

The function zt (x) is the expected gain in utility if the agent continues for another period relative

to stopping in period t. The function z̃t (s, x) is the expected gain in utility if the agent continues for

another period relative to reporting the state she is supposed to.

Corollary 3. The following sequence of transfers implement q(a,b).

pt (−1) = z̃t (−1, at) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = at]

pt (+1) = z̃t (+1, bt) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = bt]

The expressions are similar to the ones given in Kruse and Strack [24], but the formulas for both zt

and z̃t are different from the one defined in their paper and are also different from the expression in the

marginal incentive condition in Theorem 2. The monotonicity of the price functions is the key part in

proving (2) and (3)⇒ (1) in Theorem 2.

Throughout the paper, I assumed that the principal has an optimal stopping rule he plans to imple-

ment. The paper does not mention how such rule is chosen, however, given an objective function, for

example, profit maximization, it is possible to find the optimal sequence of thresholds since the expres-

sions of the transfers in terms of the thresholds are provided for every two-sided threshold strategy.
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3.4 Examples

Example 3. A worker observes job offers with wage xt ∈ [0, x̄] in period t and decides whether to accept

the offer, reject the offer and permanently leave the market, or keep searching. The government pays

lump sum employment insurance , pτ , in period τ to incentivize the worker to accept offers above some

upper threshold and to exit the market when offers are below some lower threshold. Alternatively, the

government can use other tax or transfer schemes to influence the worker into accepting offers earlier or

to stop searching and get additional education. This example extends the one in Kruse and Strack [24]

to include the possibility of the worker exiting the market.

For example, if the utility the worker gets is equal to the wage when she accepts the offer, and 0

when she stops searching permanently, the conditions in Theorem 2 become,

zt (x) = E [Xt+1|Xt = x]− x is weakly decreasing in x.

If the above condition holds, then the following transfers can be used to incentivize the worker to choose

a job search strategy described by any thresholds {(at, bt)}T.t=0

pt ( exit market ) = E [Xt+1|Xt = at] +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = at]

pt ( accept offer ) = zt (bt) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = bt]

The transfers are different from the expressions in Kruse and Strack [24] due to the addition of lower

thresholds {at}Tt=0. If at = 0 for t = 0, 1, 2, ..., T , then the condition and transfer functions coincide with

the ones in their paper.

Example 4. A Bayesian statistician must distinguish between the two possible states of the world,

s = −1 or s = +1. The statistician starts with a belief, x0, that the state is +1. The statistician

observes data and uses it to update the belief to posterior xt. In each period t, she can either decide to

collect more data at cost ct, or choose one of two possible states. If in period t, she decides that the state

of the world is qt = s and the true state of the world is also s, her payoff is equal to αt (s). Otherwise,

if the true state is -s, she gets βt (s), for each t and s ∈ {−1,+1}. Define the following constants,

mt (−1) = αt (−1)− βt (−1) and mt (+1) = βt (+1)− αt (+1) ,

kt (−1) = βt (−1)−
t∑
i=0

ci and kt (+1) = αt (+1)−
t∑
i=0

ci.
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Then, the utility function is linear in the posterior belief,

ut (qt, xt) = mt (qt)xt + kt (qt) ,

and Assumption 1 is equivalent to βt (s) < αt (s) for each t.

The single crossing condition in Theorem 2 is simplified to,

E [I (Xt+1, Xt) |Xt = x] ≤ min

{
mt (+1)

mt+1 (+1)
,
mt (−1)

mt+1 (−1)

}
.

If the belief process forms a martingale and αt (s) = α (s) , βt (s) = β (s) for each t, then the single

crossing condition in Theorem 2 is always satisfied due to the following derivation,

E [I (Xt+1, Xt) |Xt = x] =
d

dx
(E [Xt+1|Xt = x]) = 1,

because of the martingale property, and since α and β are constant over time.

mt+1 (−1)

mt (−1)
=
mt+1 (+1)

mt (+1)
= 1

Therefore, the single crossing condition is always satisfied. Bayesian hypothesis test of any size can be

implemented by adding the {pt}Tt=0 from Theorem 2 to the loss function or, equivalently, to the cost of

the samples.

Example 5. A government agency sponsoring research is choosing which one of two universities to

invest in and hires an investigator for advice. The investigator observes an additive state process,

Xt+1 = Xt + εt, where εt ∼ Gt, for some independently distributed Gt and the utility is linear in the

state with a constant discount factor δ < 1.

ut (qt, xt) = δt (mt (qt)xt + kt (qt))

Then, the single crossing condition in Theorem 2 is always satisfied due to the following derivation,

I (xt+1, x) = −
(
∂Gt (xt+1 − x)

∂x

)
1

gt (x)
= 1,
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because of the additivity of the process, and,

mt (−1)

mt+1 (−1)
=

mt (+1)

mt+1 (+1)
=

1

δ
.

Therefore, linear utility with either martingale processes or additive processes leads to implementability.

3.5 Proof of Theorem 1

Define the expression in Theorem 2 as ˜̃z.

˜̃zt (s, x) = E [ut+1 (s,Xt+1) |Xt = x]− ut (s, x) , for s ∈ {−1,+1}

This is the expected gain in utility for waiting for one more period while being forced to report the same

state, s.

Equivalence (2) ⇔ (3): I start by converting the single crossing condition in Theorem 2 to the

monotonicity condition of ˜̃zt.

Lemma 15. The single crossing condition in Theorem 2 holds if and only if s · ˜̃zt (s, x) is weakly

decreasing for s ∈ {−1,+1}.

Implication (2) ⇒ (1): I prove the monotonicity of s · ˜̃zt (s, x) implies implementability, by starting

with the following observation on z̃t.

Lemma 16. If s · ˜̃zt (s, x) is weakly decreasing, then s · z̃t (s, x) is always weakly decreasing.

Define the following transfer functions. They are not the actual transfers because they also depend

on x.

pt (s, x) = z̃t (s, x) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = x]

The following lemma shows the monotonicity of pt (s, x).

Lemma 17. If s · ˜̃zt (s, x) is weakly decreasing, then s · pt (s, x) is weakly decreasing.

The value function has the following form by induction.

Lemma 18. The value function is,

Vt (x) = ut (x) +

T−1∑
s=t

E [zs (min {max {as, Xs} , bs}) |Xt = min {max {at, x} , bt}] .
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At the end, I show that, given the above value function, any threshold strategy is implementable.

Lemma 19. Given the value function from Lemma 18, q(a,b) is implementable.

Implication (1)⇒ (2): I prove implementability implies the monotonicity of s · ˜̃zt (s, x).

Lemma 20. Suppose q(a,b) is implementable for any thresholds (a, b), then s·˜̃zt (s, x) is weakly decreasing.

The following are the proofs of the lemmas used.

Proof of Lemma 15:

s · d
˜̃zt (s, x)

dx
= s · d

dx
E [ut+1 (s,Xt+1) |Xt]− s ·

∂ut (s, x)

∂x

= −s ·
∫ x̄

x

∂ut+1 (s, xt+1)

∂x

∂Ft+1 (xt+1|x)

∂x
dxt+1 − s ·

∂ut (s, x)

∂x

= s ·
∫ x̄

x

∂ut+1 (s, xt+1)

∂x
I (Xt+1, x) ft+1 (xt+1|x) dxt+1 − s ·

∂ut (s, x)

∂x

= s · E
[
∂ut+1 (s,Xt+1)

∂x
I (Xt+1, Xt) |Xt = x

]
− s · ∂ut (s, x)

∂x

Therefore, s · ˜̃zt (s, x) is weakly decreasing if and only if,

s · E
[
∂ut+1 (s,Xt+1)

∂x
I (Xt+1, Xt) |Xt = x

]
≤ s · ∂ut (s, x)

∂x
,

which is the condition in Theorem 2.

Proof of Lemma 16: To shorten the notations, define,

ut (x) = max
s′
{ut+1 (s′, Xt+1)} .

Due to Assumption 1, following inequality holds,

dut (−1, x)

dx
≤ dut (x)

dx
≤ dut (+1, x)

dx
.

Therefore, s · z̃t (s, x) is also weakly decreasing if the condition in Theorem 2 holds.

s · dz̃t (s, x)

dx
≤ s · d

˜̃zt (s, x)

dx
≤ 0
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Proof of Lemma 17: When t = T − 1,

s · pt (s, x) = s · z̃T−1 (s, x) ,

which is weakly decreasing from Lemma 16.

The rest of the proof goes by backward induction on t. Assuming s · pt+1 (s, x) is weakly decreasing,

s · pt (s, x) = s ·

(
z̃t (s, x) +

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = x]

)

= s ·

(
z̃t (s, x) +

T−1∑
s=t+2

E [zs (min {max {as, Xs} , bs}) |Xt = x]

)

+ s · E [zt+1 (min {max {at+1, Xt+1} , bt+1}) |Xt = x]

= s · E [pt+1 (s,Xt+1) |Xt = x]

− s · E [ut+1 (s,min {max {at, Xt+1} , bt}) |Xt = x]− s · ut (s, x)

= E [s · pt+1 (s,Xt+1) |Xt = x] + s · ˜̃zt (s, x) .

Here, s · pt+1 (s,Xt+1) is weakly decreasing by induction hypothesis, s · ˜̃zt (s, x) is weakly decreasing

by assumption, and taking conditional expectations on Xt preserves monotonicity by Assumption 2.

Therefore, s · pt (s, x) is weakly decreasing in x for s ∈ {−1,+1}.

Proof of Lemma 18: The base case when t = T is,

VT (x) = uT (x) with pt (−1, at) = pt (+1, bt) = 0.

If pT 6= 0 at aT = bT , redefine ut (s, x) by subtracting the pt (−1, at) from it for all t.

For the induction, I assume that,

Vt+1 (x) = ut+1 (x) +

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt+1 = min {max {at, x} , bt}] .
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For x ≤ x?t , the value function can be simplified to,

Vt (x) = max {ut (−1, x)− pt (−1, at) , ut (1, x)− pt (+1, bt) ,E [Vt+1 (Xt+1) |Xt = x]}

= max {ut (−1, x)− pt (−1, at) ,E [Vt+1 (Xt+1) |Xt = x]}

= ut (−1, x) + max

{
z̃t (−1, at) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = at] ,

z̃t (−1, x) +

T−1∑
s=t+1

E [zs (min {max {at, Xs} , bt}) |Xt = x]

}

= ut (−1, x) + z̃t (−1,max {at, x})

+

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = max {at, x}]

= ut (−1, x) + E [ut+1 (Xt+1) |Xt = max {at, x}]− ut (−1,max {at, x})

+

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = max {at, x}] .

The second to last line is obtained by substituting in the transfers and applying the induction hypothesis.

Proof of Lemma 19: I define Ut (x) as the utility the agent observing state x gets if she stops.

Ut (x) = max {ut (−1, x)− pt (−1, at) , ut (+1, x)− pt (+1, bt)}

Let x?t be the x that satisfies ut (−1, x) − pt (−1, at) = ut (+1, x) − pt (+1, bt). Then due to the mono-

tonicity of ut (s, x) from the assumption of the lemma, Ut (x) can be rewritten as,

Ut (x) =

 ut (−1, x)− pt (−1, at) if x ≤ x?t

ut (+1, x)− pt (+1, bt) if x ≥ x?t .

If x > x?t , using similar arguments, we obtain,

Vt (x) = ut (+1, x) + E [ut+1 (Xt+1) |Xt = min {x, bt}]− ut (+1,min {x, bt})

+

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = max {at, x}] .
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Combining the above two pieces results in the desired form,

Vt (x) = ut (x) + E [ut+1 (Xt+1) |Xt = min {max {at, x} , bt}]− ut (min {max {at, x} , bt})

+

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = min {max {at, x} , bt}]

= ut (x) +

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs})] + zt (min {max {at, x} , bt})

= ut (x) +

T−1∑
s=t

E [zs (min {max {as, Xs} , bs})] .

Therefore, if x < at ,

Vt (x)− Ut (x) = Vt (x)− (ut (−1, x)− pt (−1, at))

= z̃t (−1, at) +

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = at]

− z̃t (−1, at)−
T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = at]

= 0.

The same expression can be found for x > bt .

If at ≤ x ≤ x?t ,

Vt (x)− Ut (x) = Vt (x)− (ut (−1, x)− pt (−1, at))

= z̃t (−1, x) +

T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = x]

− z̃t (−1, at)−
T−1∑
s=t+1

E [zs (min {max {as, Xs} , bs}) |Xt = at]

≥ 0.

Similarly, if x?t ≤ x ≤ bt ,

Vt (x)− Ut (x) ≥ 0,
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and if x ≥ bt ,

Vt (x)− Ut (x) = 0.

Combining the four pieces for x in different parts of the domain, we get,

Vt (x)− Ut (x)

 = 0 if x /∈ [at, bt]

≥ 0 if x ∈ [at, bt] .

Therefore, the optimal strategy is q(a,b), and this is implementable by transfers pt (−1, at) and pt (+1, bt),

which are the transfers given in Lemma 17.

Proof of Lemma 20: Consider the two sequences of thresholds {(at, x̄)}Tt=0 and {(x, bt)}Tt=0.

Given {(x, bt)}Tt=0 is implementable, take x < x′ and assume ˜̃zt (+1, x) < ˜̃zt (+1, x′) for a contradic-

tion.

For x, the value function in the recursive form is given by,

Vt (x)− Ut (x) = max {Ut (x) ,E [Vt+1 (Xt+1) |Xt = x]} − Ut (x)

= max {0,E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x]

+E [ut+1 (Xt+1) |Xt = x]− ut (+1, x)− pt (−1, at)}

= max
{

0,E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x] + ˜̃zt (+1, x)− pt (−1, at)
}
.

All of the future transfers are fixed for different values of bt. Therefore, Vt+1 (x) and Ut (x) are fixed for

different values of bt. Consider two cases for bt as follows:

For x < x′, if the following holds,

E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x] ≤ E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x′] ,

I implement the stopping rule bt = x′. This means that the agent observing state xt = x should continue

at time t. However,

E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x] + ˜̃zt (+1, x)− pt (−1, at)

< E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x′] + ˜̃zt (+1, x′)− pt (−1, at)

= 0.
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The inequality shows that it is optimal for the agent observing state xt = x to stop, contradicting the

definition of the stopping rule with bt = x′ > x.

Similarly, if the following holds,

E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x] ≥ E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x′] ,

I implement the stopping rule bt = x. It means that the agent observing state xt = x should stop at

time t. However,

E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x′] + ˜̃zt (+1, x′)− pt (−1, at)

> E [Vt+1 (Xt+1)− ut+1 (Xt+1) |Xt = x] + ˜̃zt (+1, x)− pt (−1, at)

= 0.

This shows that it is optimal for the agent observing state xt = x′ to continue, contradicting the definition

of the stopping rule with bt = x < x′.

Therefore, ˜̃zt (+1, x) is weakly decreasing in x.

Similarly, ˜̃zt (−1, x) is weakly increasing in x since {(at, x̄)}Tt=0 is implementable.

Therefore, s · ˜̃zt (s, x) is weakly decreasing in x for s ∈ {+1,−1}.
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