Project Ideas
CS 764, Fall 2020

This document is just to give you some ideas about potential project topics. You are encouraged to explore other ideas that interest you (e.g., those relate to your own research projects) but are not in this document.

1. There is significant work on join algorithms for main-memory, multi-core, multi-socket settings for both hash and sort-based algorithms. See:
 - Spyros Blanas, Yinan Li, Jignesh M. Patel: Design and evaluation of main memory hash join algorithms for multi-core CPUs. SIGMOD Conference 2011: 37-48

Some of the previous work suggests that radix join has the highest performance when joining two tables. However, many real-world in-memory databases systems use non-partitioned hash joins for joining multiple tables. There are a few interesting project topics to investigate under this umbrella:
 - Conduct a survey on recent join algorithms in multiple core, or distributed system, or new hardware (e.g., GPU) and summarize the key findings of previous work.
 - Evaluate radix join vs. non-partitioned hash joins as the number of tables in the join changes. Find out which algorithm performs best under what scenario. Is it possible to combine them to achieve the best of both?

2. Non-volatile memory is poised to transform the memory hierarchy of computer systems over the next decade. It promises to offer byte-addressable permanent storage at an order of magnitude larger than RAM at latencies several orders of magnitude less than flash/SSDs. How does NVM change the way we implement buffer management and database logging? What new optimizations can NVM enable for a database system? You can start with the following papers:

3. The recent developments in machine learning is affecting the way people build database systems. Below are some of the papers in this area. You can conduct a survey of recent work in this area, or dive deeper into a particular idea trying to improve the state-of-the-art.
 - Kraska, Tim, et al. "The case for learned index structures." SIGMOD 2018
 - Van Aken, Dana, et al. "Automatic database management system tuning through large-scale machine learning." SIGMOD 2017

4. Hybrid transactional/analytical processing (HTAP) supports efficient transactional and analytical processing in a single database system. A number of such systems have been developed in multiple companies. You can conduct a survey of recently built systems, identify limitations in existing solutions, and try to propose new idea. Below are some relevant papers:
 - Yang, Jiacheng, et al. "F1 Lightning: HTAP as a Service." VLDB 2020
5. Transactions have been studied by the database and system communities for multiple decades and many research problems have been investigated by generations of researchers. The advent of new hardware, systems architectures, and application demands create new challenges in transaction processing. For each of the following topics, you can conduct a survey or dive deeper into a specific topic to develop new ideas.

- What are the common techniques to handle high-contention transactions? How do they compare in terms of effectiveness?
 - Huang, Yihe, et al. "Opportunities for optimism in contended main-memory multicore transactions." VLDB 2020

- What’s the tradeoff between different concurrency control protocols in terms of tail latency?

- How does cloud change the traditional wisdom of building transaction processing systems?
 - Verbitski, Alexandre, et al. "Amazon aurora: On avoiding distributed consensus for i/o, commits, and membership changes." SIGMOD 2018

- What are the main disadvantages of deterministic databases today? What are the possible solutions to these problems?

6. GPUs are good at massively parallel computation tasks. How can GPU accelerate data analytics workloads?

7. Investigate data compression and decompression algorithms in CPU or GPU, or both

- Polychroniou, Orestis, and Kenneth A. Ross. "Efficient lightweight compression alongside fast scans." DaMoN@SIGMOD 2015

8. Compare different indexing approaches used for modern systems

- Wang, Ziqi, et al. "Building a bw-tree takes more than just buzz words." SIGMOD 2018