
PushdownDB: Accelerating a DBMS
using S3 Computation

Xiangyao Yu∗, Matt Youill‡, Matthew Woicik†, Abdurrahman Ghanem§,
Marco Serafini¶, Ashraf Aboulnaga§, Michael Stonebraker†
∗University of Wisconsin-Madison †Massachusetts Institute of Technology

‡Burnian §Qatar Computing Research Institute ¶University of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem@hbku.edu.qa,

marco@cs.umass.edu, aaboulnaga@hbku.edu.qa, stonebraker@csail.mit.edu

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analytics queries into the Simple Storage Service
(S3) engine of Amazon Web Services (AWS), using a recently
released capability called S3 Select. We show that some DBMS
primitives (filter, projection, aggregation) can always be cost-
effectively moved into S3. Other more complex operations (join,
top-K, group-by) require reimplementation to take advantage of
S3 Select and are often candidates for pushdown. We demonstrate
these capabilities through experimentation using a new DBMS
that we developed, PushdownDB. Experimentation with a collec-
tion of queries including TPC-H queries shows that PushdownDB
is on average 30% cheaper and 6.7× faster than a baseline that
does not use S3 Select.

I. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
two components are independently managed and connected
using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of storage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-
aggregated cloud storage, including Presto [1], Snowflake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. The internal bandwidth of the storage devices
within a storage server is much higher than the external
network bandwidth commonly offered by cloud storage. As a
result, a database running on a disaggregated architecture may
underperform a database on a conventional shared-nothing
architecture, where the storage devices are attached to the
compute servers themselves [4].

Two intuitive solutions exist to mitigate the network bot-
tleneck: caching and computation pushdown. With caching,
a compute server loads data from the remote storage once,
caches it in main memory or local storage, and reuses it across
multiple queries, thereby amortizing the network transfer cost.
Caching has been implemented in Snowflake [2] and the
Redshift [5] layer of Redshift Spectrum [3]. With computation
pushdown, a database management system (DBMS) pushes its

functionality as close to storage as possible. A pioneering pa-
per by Hagmann [6] studied the division of SQL code between
the storage layer and the application layer and concluded that
performance was optimized if all code was moved into the
storage layer. Moreover, one of the design tenets of the Britton-
Lee IDM 500 [7], the Oracle Exadata server [8], and the IBM
Netezza machine [9] was to push computation into specialized
processors that are closer to storage.

Recently, Amazon Web Services (AWS) introduced a fea-
ture called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
S3 [10]. This provides an opportunity to revisit the question of
how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of S3 Select allows only
certain simple query operators to be pushed into the storage
layer, namely selections, projections, and simple aggregations.
Other operators require new implementations to take advan-
tage of S3 Select. Moreover, S3 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with disaggregated storage. Specifically, we consider
filter (with and without indexing), join, group-by, and top-K as
candidates. We implement these operators to take advantage of
computation pushdown through S3 Select and study their cost
and performance. We show dramatic performance improve-
ment and cost reduction, even with the relatively high cost
of S3 Select. In addition, we analyze queries from the TPC-
H benchmark and show similar benefits of performance and
cost. We also point out the limitations of the current S3 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
this is the first extensive study of pushdown computing for
database operators in a disaggregated architecture.

For the rest of this paper, Section II describes the cloud
environment of our evaluation. Section III describes the Push-
downDB database we implemented. Then Sections IV–VII de-
scribe how filter, join, group-by, and top-K can leverage S3 Se-
lect, and evaluates the performance using micro benchmarks.
Section VIII shows evaluation on the TPC-H benchmark suite.
Section IX evaluates the Parquet data format. Section X

ar
X

iv
:2

00
2.

05
83

7v
1 

 [
cs

.D
B

] 
 1

4 
Fe

b 
20

20



discusses ways to improve the current S3 Select interface.
Finally, Section XI describes related work and Section XII
concludes the paper.

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing services, and renting nodes is a basic one. In
AWS, this service is called Elastic Compute Cloud (EC2).
EC2 computing nodes (called instances) come in different
configurations and can have locally-attached storage.

In the context of a DBMS, EC2 instances are used to execute
SQL queries. AWS offers Simple Storage Service (S3) [11],
a highly available object store. S3 provides virtually infinite
storage capacity for regular users with relatively low cost,
and is supported by most popular cloud databases, including
Presto [1], Hive [12], Spark SQL [13], Redshift Spectrum [3],
and Snowflake [2]. The storage nodes in S3 are separate from
compute nodes. Hence, a DBMS uses S3 as a storage system
and transfers needed data over a network for query processing.

S3 is a popular storage choice for cloud databases, since S3
storage is much cheaper than locally-attached and/or block-
based alternatives, e.g., Elastic Block Store (EBS). In addition,
S3 data can be shared across multiple computing instances.

A. S3 Select

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called S3
Select [10] in 2018 to push limited computation to the storage
nodes. Normal S3 supports put/get operators that write/read
a whole object or part of it (based on byte offsets). S3
Select adds support for a limited set of SQL queries. At the
current time, S3 Select supports only selection, projection,
and aggregation without group-by for tables using the CSV
or Parquet [14] format.

We show examples of the SQL queries supported by S3
Select in the subsequent sections. S3 Select implements these
operators by scanning the rows in the table and returning
qualifying rows to the compute node. More sophisticated
operations such as join, group by, and top-K are not supported
by S3 Select and need to be executed at a compute node.
Redesigning these more complex query operators to use S3
Select is challenging. For example, supporting a join operator
will require data shuffling among storage nodes. In this paper,
we study how these advanced operators can be broken down
into simpler ones to leverage S3 Select. We propose and
evaluate several implementations of these more advanced
operators and show that they can often be made faster and
cheaper than loading all data into EC2 compute nodes.

B. Computing Query Cost

The dollar cost of queries is a crucial factor, since it is one of
the main reasons to migrate an application from “on-prem” to
the cloud. For the same AWS service, cost varies based on the
region where the users data and computation are located. We
limit our cost calculation to US East (N. Virginia) pricing. In
this section, we discuss the costs associated with the services

we use in our experiments: storage, data access, data transfer,
network requests, and computation on EC2 instances.
Storage cost. S3 storage cost is charged monthly based on
the amount of space used. For example, S3 standard storage
costs about $0.022/GB/month. Although other AWS storage
services may offer better IO performance, they are also more
expensive than S3. Since the storage cost only depends on
data size and not on frequency of access, we exclude it when
calculating query cost in this paper.
Data transfer cost. AWS S3 users are charged for only the
outgoing traffic and the price is based on the destination of
the data. When S3 Select is not used, this price ranges from
free (transferring data within the same region) to $0.09/GB
(transferring data out of AWS). Servers in our experiments
are within the same region as the S3 data. Therefore, we do
not pay any data transfer cost.
S3 Select cost. S3 Select introduces a new cost component
that is based on the amount of data scanned ($0.002/GB)
in processing an S3 Select query and the amount of data
returned ($0.0007/GB). The cost for data return depends on the
selectivity of the query. Data scan and transfer cost is typically
a major component in overall query cost when S3 Select is in
use.
Network request cost. Issuing HTTP requests to Amazon
S3 is charged based on the request type and the number of
requests. We consider only the cost of HTTP GET requests
($0.0004 per 1,000 requests) as this is the only request type
we use. This cost is paid for both S3 Select requests and
conventional table read requests.
Computation cost. We used EC2 memory-optimized in-
stances for our experiments. The query execution time is
measured in seconds and used to calculate the computation
cost based on the hourly price of the host EC2 instance (e.g.,
r4.8xlarge instances costs $2.128 per hour). The computation
cost is another significant component of the overall query cost.

III. DATABASE TESTBED: PUSHDOWNDB

In order to explore how S3 Select can be leveraged to im-
prove query performance and/or reduce cost, we implemented
a bare-bone row-based DBMS testbed, called PushdownDB.
We concluded that modifying a commercial multi-node DBMS
(e.g., Presto) would be a prohibitive amount of work. Instead,
we implemented PushdownDB which has a minimal optimizer
and an executor that enables the experiments in this paper.

We made a reasonable effort to optimize PushdownDB’s
performance. While we could not match the performance of
the more mature Presto system on all queries, we obtained
competitive performance, as shown in Section VIII. The source
code of PushdownDB is available on github at https://github.
com/yxymit/s3filter.git, and is implemented in a mixture of
C++ and Python.

PushdownDB represent the query plan as a directed acyclic
graph and executes queries in either serial or parallel mode. In
the serial mode, a single CPU executes one operator at a time.
In the parallel mode, each operator executes in parallel using

 https://github.com/yxymit/s3filter.git
 https://github.com/yxymit/s3filter.git


multiple Python processes and passes batches of tuples from
producer to consumer using a queue. Most operators achieve
better performance in the parallel mode, but some operators
can benefit from serial mode. A projection followed by a filter,
for example, can demonstrate better performance when run
in the same process, because this avoids inter-process data
transfers. Most queries in this paper are executed in a mixture
of the two modes.

A few performance optimizations have been built into Push-
downDB. For example, PushdownDB does not use SSL as we
expect analytics workloads would typically be run in a secure
environment. Also, PushdownDB uses the Pandas library [15]
to represent collections of tuples as data frames, generating
a significant performance advantage over implementing tuple
processing in plain Python.
Experimental Setup. Experiments in this paper are performed
on an r4.8xlarge EC2 instance, which contains 32 physical
cores, 244 GB of main memory, and a 10 GigE network. The
machine runs Ubuntu 16.04.5 LTS. PushdownDB is executed
using Python version 2.7.12.

Unless otherwise stated, all experiments use the same 10 GB
TPC-H dataset in CSV format. We will also report Parquet ex-
periments in Section IX. To facilitate parallel processing, each
table is partitioned into multiple objects in S3. The techniques
discussed in this paper do not make any assumptions about
how the data is partitioned. During execution, PushdownDB
spawns multiple processes to load data partitions in parallel.

IV. FILTER

This section discusses how PushdownDB accelerates filter
operators using S3 Select. Given that it is straightforward
to pushdown a where clause to S3, we focus on the more
interesting problem of supporting indexing using S3 Select.

A. Indexing with S3 Select
Both hash indexes and tree-based indexes are widely used in

database systems. Neither implementation, however, is a good
fit for a cloud storage environment because a single index
lookup requires multiple accesses to the index. This causes
multiple S3 requests that incur long network delays. To avoid
this issue, we designed an index table that is amenable to the
filtering available in S3 Select.

An index table contains the values of the columns to be
indexed, as well as the byte offsets of indexed records in that
table. Specifically, an index table has the following schema
(assuming the index is built on a single column).

|value|first_byte_offset|last_byte_offset|

Accessing a table through an index comprises two phases.
In phase 1, the predicate on the indexed columns is sent to the
index table using an S3 Select request. Then the byte offsets
of selected rows are returned to the compute server. In phase
2, the byte offsets are used to directly load the corresponding
rows from the data table, by sending an HTTP request for
each individual row. Note that accesses in the second phase
do not use S3 Select and therefore do not incur the associated
extra cost.

10−7 10−6 10−5 10−4 10−3 10−2

Filter Selectivity

0

20

40

60

80

100

R
un

tim
e 

(s
ec

)

Server-Side Filter S3-Side Filter Indexing

(a) Runtime

10−7 10−6 10−5 10−4 10−3 10−2

Filter Selectivity

0.00

0.02

0.04

0.06

0.08

0.10

C
os

t (
$)

0.30
Server-Side Filter S3-Side Filter Indexing

Compute Cost
Request Cost
Scan Cost
Transfer Cost

Compute Cost
Request Cost
Scan Cost
Transfer Cost

(b) Cost

Fig. 1: Filter algorithms — Performance and cost of three
filtering strategies as the filter selectivity changes.

B. Performance Evaluation

Figure 1 shows the runtime and cost of different filtering
algorithms as the filter selectivity increases from 10−7 to 10−2.
Server-side filter loads the entire table from S3 and performs
filtering on the compute node. S3-side filter sends the filtering
predicate to S3 in an S3 Select request. S3-side indexing uses
the index table implementation.

The performance improvement (Figure 1a) from server-side
filter to S3-side filter is a dramatic 10× and remains stable
as selectivity changes in the specified range. S3-side indexing
has similar performance as S3-side filter when the filter is
highly selective, but the performance of indexing degrades as
the the filter selects more than 10−4 of the rows. In this case,
more rows are returned and most of the execution time is
spent requesting and receiving individual byte ranges from the
data table. Although these requests are sent in parallel, they
incur excessive CPU computation that become a performance
bottleneck.

The cost (Figure 1b) of each run is broken down into four
components: compute cost, S3 request cost, S3 data scan cost,
and data transfer cost. Each component is denoted using a
different type of hash marks. Overall, S3-side filter is 24%
more expensive than server-side filter. Most of the cost of S3-
side filter is due to S3 data scanning and loading, while most
of the cost of server-side filter is due to computation. S3-
side indexing is cheaper than server-side filter by 2.7× when
the filter is very selective, because the index table redues the
amount of data being scanned and transferred. As the filter
passes more data, however, the cost of indexing grows rapidly
due to increasing HTTP requests.

In conclusion, S3-side indexing is the best approach with



highly selective queries, whereas S3-side filter achieves a good
balance between performance and cost for queries with any
selectivity.

V. JOIN

S3 Select does not support pushing a join operator in its
entirety into S3. This section shows how PushdownDB breaks
down a join to partially leverage S3 Select.

It is inherently difficult to take advantage of pushdown
processing for joins. The two tables to be joined are typically
partitioned across multiple S3 objects so that data can be
loaded in parallel. If the two tables are not partitioned on the
join key, implementing a join operator requires shuffling data
among different partitions, which is challenging to support
at the storage layer. PushdownDB supports joining tables not
partitioned on the join key, as we describe next.

We limit our discussion to hash joins implemented using
two phases: the build phase loads the smaller table in parallel
and sends each tuple to the appropriate partition to build a
hash table; the probe phase loads the bigger table in parallel
and sends the tuples to the correct partition to join matching
tuples by probing the hash table.

A. Join Algorithms

PushdownDB supports three join algorithms: Baseline Join,
Filtered Join, and Bloom Join. These algorithms leverage S3
Select in different ways.

In baseline join, the server loads both tables from S3 and
executes the hash join locally, without using S3 Select. Filtered
join pushes down selection and projection using S3 Select, and
executes the rest of the query in the same way as baseline join.
We will not discuss these two algorithms in detail due to their
limited use of S3 Select.

In this section, we focus our discussion on Bloom join: after
the build phase, a Bloom filter is constructed based on the join
keys in the first table; the Bloom filter is then sent as an S3
Select request to load a filtered version of the second table.
In other words, rows that do not pass the Bloom filter are not
returned.

1) Bloom Filter: A Bloom filter [16] is a probabilistic data
structure that determines whether an element exists in a set
or not. A Bloom filter has no false negatives but may have
false positives. If a Bloom filter returns false, the element
is definitely not in the set; if a Bloom filter returns true,
the element may be in the set. Compared to other data
structures achieving the same functionality, a Bloom filter has
the advantage of high space efficiency.

A Bloom filter contains a bit array of length m (initially
containing all 0’s) and uses k different hash functions. To add
an element to a Bloom filter, the k hash functions are applied
to the element. The output of each hash function is a position
in the bit array, which is then set to 1. Therefore, at most k
bits will be set for each added element. To query an element,
the same k hash functions are applied to the element. If the
corresponding bits are all set, then the element may be in the
set; otherwise, the element is definitely not in the set. The false

positive rate of a filter is determined by the size of the set, the
length of the bit array, and the hash functions are being used.

Universal hashing [17] is a good candidate for our Bloom
filter approach as it requires only arithmetic operators (which
S3 Select supports) and represents a family of hash functions.
The hash functions that we use can be generalized as:

ha,b(x) = ((a× x+ b) mod n) mod m

Where m is the length of the bit array and n is a prime ≥
m. a and b are random integers between 0 and n− 1, where
a 6= 0.

Given a desired false positive rate p, the number of hash
functions kp and the length of the bit array mp are determined
by the following formulas [18], where s is the number of
elements in the set.

kp = log2
1

p
, mp = s× |ln p|

(ln 2)2

2) Bloom Join in PushdownDB: Bloom filters are usually
processed using bitwise operators. However, since S3 Select
does not support bitwise operators or binary data, an alter-
native is required that not only represents the bit array but
can be tested for the presence of a set bit. In PushdownDB,
we use strings of 1’s and 0’s to represent the bit array. The
following example shows what an S3 Select query containing
a Bloom filter would look like. The arithmetic expression on
attr within the SUBSTRING function is the hash function
on attr.
SELECT

...
FROM

S3Object
WHERE

SUBSTRING(’1000011...111101101’,
((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1

) = ’1’

Listing 1: Example Bloom filter query

With Bloom join, the first table (typically the smaller one) is
loaded with filtering and projection pushed to S3. The returned
tuples are used to construct both the Bloom filter and the hash
tables. The Bloom filter is then sent to S3 to load the second
table. The returned tuples then probe the hash table to finish
the join operation.

The current implementation of Bloom join supports only
integer join attributes. This is because the hash functions
only support integer data types at present. A more general
support for hashing in the S3 Select API would enable Bloom
joins on arbitrary attributes. In fact, while algorithms exist
for hashing variable-length strings, they require looping and/or
array processing operators that are not currently available to S3
Select queries. Additionally, since the bit array is represented
using 1 and 0 characters, the bit array is much larger than it
would be if S3 Select had support for binary data or bitwise
operators to test the presence of a set bit. We believe that
extending the S3 Select interface in this fashion would be
beneficial in our Bloom join algorithm, and perhaps elsewhere.



-950 -850 -750 -650 -550 -450
Customer Filter Selectivity (c_acctbal <= ?)

0
2
4
6
8

10
12
14
16

R
un

tim
e 

(s
ec

)

Baseline Join Filtered Join Bloom Join

(a) Runtime

-950 -850 -750 -650 -550 -450
Customer Filter Selectivity (c_acctbal <= ?)

0.000

0.005

0.010

0.015

0.020

C
os

t (
$)

Baseline Join Filtered Join Bloom Join

Compute Cost
Request Cost

Scan Cost
Transfer Cost

Compute Cost
Request Cost

Scan Cost
Transfer Cost

(b) Cost

Fig. 2: Customer selectivity — Performance and cost when
varying customer table selectivity.

B. Performance Evaluation

We compare the runtime and cost of the three join al-
gorithms: baseline, filtered, and Bloom joins. Our experi-
ments use the customer and orders tables from the TPC-H
benchmark with a scale factor of 10. The following SQL
query will be used for evaluation. Our experiments will
sweep two parameters in the query, upper_c_acctbal
and upper_o_orderdate, with their default values being
−950 and None, respectively.

SELECT
SUM(O_TOTALPRICE)

FROM
CUSTOMER, ORDER

WHERE
O_CUSTKEY = C_CUSTKEY AND
C_ACCTBAL <= upper_c_acctbal AND
O_ORDERDATE < upper_o_orderdate

Listing 2: Synthetic join query for evaluation

1) Customer Selectivity: This experiment sweeps selec-
tivity on the customer table by varying the value of
upper_c_accbal from -950 to -450, meaning relatively
small numbers of tuples are returned from the customer table.
For this experiment, the orders table selectivity is fixed at
‘None’ (all rows are returned). The false positive rate for the
Bloom filter is 0.01.

Figure 2 shows the runtime and cost of different join
algorithms as the selectivity on the customer table changes.
Baseline and filtered joins perform similarly, which is expected
since they only apply selection to the smaller customer table
and load the entire orders table, which incurs the same large

19
92

-03
-01

19
92

-06
-01

19
93

-01
-01

19
94

-01
-01

19
95

-01
-01

Non
e

Order Filter Selectivity (o_orderdate < ?)

0
2
4
6
8

10
12
14
16

R
un

tim
e 

(s
ec

)

Baseline Join Filtered Join Bloom Join

(a) Runtime

19
92

-03
-01

19
92

-06
-01

19
93

-01
-01

19
94

-01
-01

19
95

-01
-01

Non
e

Order Filter Selectivity (o_orderdate < ?)

0.000

0.005

0.010

0.015

0.020

0.025

C
os

t (
$)

Baseline Join Filtered Join Bloom Join

Compute Cost
Request Cost

Scan Cost
Transfer Cost

Compute Cost
Request Cost

Scan Cost
Transfer Cost

(b) Cost

Fig. 3: Orders selectivity — Performance and cost when
varying the orders table selectivity.

amount of network traffic. Bloom join performs significantly
better than either as the high selectivity on the first table is
encapsulated by the Bloom filter, which significantly reduces
the number of returned rows for the larger orders table. As the
predicate on the customer table becomes less selective, Bloom
joins performance degrades as fewer records are filtered by
the Bloom filter. Bloom join is cheaper than the other two
algorithms with high selectivity, although the cost advantage
is not as significant as the runtime advantage.

It is important to note that the limit on the size of S3
Select’s SQL expressions is 256KB. In this example, if the
selectivity on the customer table is low, the required Bloom
filter needs to be bigger and thus may exceed the size limit.
PushdownDB detects this case and increases the false positive
rate for the Bloom filter to ensure this limit is not exceeded.
In the case where the best achievable false positive rate cannot
be less than 1, PushdownDB falls back to not using a Bloom
filter at all, resulting in an algorithm similar to a filtered join.
However, there is one difference between the degraded Bloom
join and a filtered join: in the Bloom join, the two table scans
happen serially, since the decision to revert to filtered join is
made only after the first table is loaded. The original filtered
join algorithm can load the two tables in parallel, thereby
performing better than a degraded Bloom join.

2) Orders Selectivity: This experiment fixes customer table
selectivity at -950 (highly selective) and the false positive rate
for the Bloom filter at 0.01. The selectivity for the orders table
is swept from high to low by limiting records returned from
the orders table by sweeping upper_o_orderdate in the



0.0
00

1
0.0

01 0.0
1 0.1 0.3 0.5

Bloom Filter False Positive Rate

0
2
4
6
8

10
12
14
16

R
un

tim
e 

(s
ec

)

Baseline Join Filtered Join Bloom Join

(a) Runtime

0.0
00

1
0.0

01 0.0
1 0.1 0.3 0.5

Bloom Filter False Positive Rate

0.000

0.005

0.010

0.015

0.020

C
os

t (
$)

Baseline Join Filtered Join Bloom Join

Compute Cost
Request Cost

Scan Cost
Transfer Cost

Compute Cost
Request Cost

Scan Cost
Transfer Cost

(b) Cost

Fig. 4: Bloom filter false positive rate — Performance and
cost when varying the Bloom filter false positive rate.

range of [‘1992-03-01’, ‘1992-06-01’, ‘1993-01-01’, ‘1994-
01-01’, ‘1995-01-01’, None].

The results are shown in Figure 3. Filtered join performs
significantly better than baseline join when the filter on the or-
ders table is selective. The performance advantage disappears
when the filter becomes less selective. Bloom join performs
better and remains fairly constant as the number of records
returned from the orders table remains small due to the Bloom
filter. The cost of Bloom join is either comparable or cheaper
than the alternatives.

3) Bloom Filter False Positive Rate: This experiment fixes
both customer table selectivity and orders table selectivity at -
950 and ‘None’, respectively. The false positive rate for Bloom
Join is swept from low to high to low using the rates [0.0001,
0.001, 0.01, 0.1, 0.3, 0.5].

Figure 4 shows the runtime and cost of baseline and filtered
join as well as Bloom join with different false positive rates.
We can see that the best performance and cost numbers can
be achieved when the false positive rate is 0.01. When the
false positive rate is low, the Bloom filter is large in size,
increasing the computation requirement in S3 Select. When
the false positive rate is high, the Bloom filter is less selective,
meaning more data will be returned from S3. A rate of 0.01
strikes a balance between these two factors.

VI. GROUP-BY

The current S3 Select supports simple aggregation on in-
dividual attributes but not with a group-by clause. Pushing a
group-by aggregation to S3 is desirable as it can significantly

reduce network traffic. In this section, we explore designs of
group-by algorithms that leverage S3 Select.

Group-by can be performed at the server-side by loading all
data from S3 directly (Server-side group-by) or loading S3 data
using a predicate (Filtered group-by). Both implementations
are straightforward. Therefore, we focus our discussion on two
other algorithms that are less obvious to implement but deliver
better performance — S3-side group-by and Hybrid group-by.

A. S3-Side Group-By

The S3-side group-by algorithm pushes the group-by logic
entirely into S3 and thus minimizes the amount of network
traffic. We use the following query to demonstrate how the
algorithm works. It computes the total account balance for
each nation in the customer table.

SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Listing 3: Example group-by query

The first phase of execution collects the values for the
groups in the group-by clause. For the example query, we need
to find the unique values of c_nationkey. This is accom-
plished by running a projection using S3 Select to return only
the c_nationkey column (i.e., SELECT c_nationkey
FROM customer). The compute node then finids unique
values in the column.

In the second phase of execution, PushdownDB requests
S3 to perform aggregation for each individual group that the
first phase identified. For example, if the unique values of
c_nationkey are 0 and 1, then the following query will be
sent to S3 in phase 2.

SELECT sum(CASE WHEN c_nationkey = 0
THEN c_acctbal ELSE 0 END),

sum(CASE WHEN c_nationkey = 1
THEN c_acctbal ELSE 0 END)

...
FROM customer;

Listing 4: Phase 2 of S3-side group-by

The first and second returned numbers are the total customer
balance for c_nationkey = 0 and 1, respectively. The num-
ber of columns in the S3 Select response equals the number
of unique groups multiplied by the number of aggregations.
The query execution node converts the results into the right
format and returns them to the user.

B. Hybrid Group-By

In practice, many data sets are highly skewed, with a few
large groups containing the majority of rows, and many groups
containing only a few rows. For these workloads, S3-side
group-by will likely deliver bad performance since the large
number of groups leads to long S3 Select queries. To solve
this problem, we propose a hybrid group-by algorithm that
distinguishes groups based on their size. Hybrid group-by
pushes the aggregation on large groups to S3, thus eliminating
the need for transferring large amounts of data. Small groups,
on the other hand, are aggregated by the query execution
nodes.



Similar to S3-side group-by, hybrid group-by also contains
two phases. In the first phase, however, hybrid group-by does
not scan the entire table, but only a sample of rows as they
are sufficient to capture the populous groups. In particular,
PushdownDB scans the first 1% of data from the table.

Q1: SELECT sum(CASE WHEN c_nationkey = 0
THEN c_acctbal ELSE 0 END)

FROM customer;

Q2: SELECT c_nationkey, c_acctbal
FROM customer
WHERE c_nationkey <> 0

Listing 5: Phase 2 of hybrid group-by

Listing 5 shows the S3 Select query for the second phase
of hybrid group-by. Two queries are sent to S3. Q1 runs
remote aggregation for the large groups (in this example,
c_nationkey = 0), similar to the second phase of S3-side
group-by. Q2 is sent for loading rows belonging to the rest of
the groups from S3. Aggregation for these rows is performed
locally at the compute node.

C. Performance Evaluation

We evaluate the performance of different group-by algo-
rithms using synthetic data sets as they allow us to change
different parameters of the workload. We present results with
both uniform and skewed group sizes.

1) Uniform Group Size: This section presents experimental
results for a dataset with uniform group sizes. Three group-
by implementations are included: server-side group-by, filtered
group-by, and S3-side group-by. Hybrid group-by will be
discussed in detail in the next section. These experiments are
performed on a 10 GB table with 20 columns. The first 10
columns contain group IDs and each column contains different
numbers of unique groups (from 2 to 210). The group sizes
are uniform, meaning each group contains roughly the same
number of rows. The other 10 columns contain floating point
numbers and are the fields that will be aggregated.

Figure 5 shows the runtime and cost per query for different
group-by algorithms, as the number of groups changes from
2 to 32. Each query performs aggregation over four columns.
The performance of server-side group-by and filtered group-
by does not change with the number of groups, because both
algorithms must load all the rows from S3 to the compute
node. However, filtered group-by loads only the four columns
on which aggregation is performed while server-side group-
by loads all the columns. This explains the 64% higher
performance of filtered over server-side group-by. S3-side
group-by performs 4.1× better than filtered group-by when
there are only a few unique groups. Performance degrades,
however, when more groups exist. This is due to the increased
computation overhead that is performed by the S3 servers.

Although the three algorithms have relatively high variation
in their runtime numbers, the cost numbers are relatively close
until eight groups. The server-side group-by pays more for
compute, but the other two algorithms pay more for scanning
and transferring S3 data.

2 4 8 16 32
Number of Groups

0

20

40

60

80

100

120

R
un

tim
e 

(s
ec

)

Server-Side Group-By Filtered Group-By S3-Side Group-By

(a) Runtime

2 4 8 16 32
Number of Groups

0.00

0.02

0.04

0.06

0.08

0.10

0.12

C
os

t (
$)

Server-Side Group-By Filtered Group-By S3-Side Group-By

Compute Cost
Request Cost
Scan Cost
Transfer Cost

Compute Cost
Request Cost
Scan Cost
Transfer Cost

(b) Cost

Fig. 5: Number of groups — Performance and cost as the
number of groups increases.

1 4 6 8 10 12
Number of Groups Aggregated in S3

0
10
20
30
40
50
60
70

R
un

tim
e 

(s
ec

)

Server-Side Time S3-Side Time

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

B
yt

es
 R

et
ur

ne
d 

(G
B

)

Fig. 6: Server- vs. S3-side aggregation in hybrid group-by.

2) Skewed Group Sizes: We use a different workload to
study the effect of non-uniform group sizes. The table contains
10 grouping columns and 10 floating point value columns.
The number of rows within each group is non-uniformly
distributed. Each grouping column contains 100 groups and
the number of rows within each group follows a Zipfian
distribution [19] controlled by a parameter θ. A larger θ means
more rows are concentrated in a smaller number of groups.
For example, θ = 0 corresponds to a uniform distribution and
θ = 1.3 means 59% of rows belong to the four largest groups.

We first investigate an important parameter in hybrid group-
by: how many groups should be aggregated at S3 vs. server
side. Figure 6 shows the runtime of server-side and S3-side ag-
gregation while increasing the number of groups aggregated in
S3. The bars show the runtime and the line shows the number
of bytes returned from S3. More S3-side aggregation increases
the execution time of the part of query executed at S3, but



0 0.6 0.9 1.1 1.3
Skew Factor

0
10
20
30
40
50
60
70

R
un

tim
e 

(s
ec

)
Server-Side Group-By Filtered Group-By Hybrid Group-By

(a) Runtime

0 0.6 0.9 1.1 1.3
Skew Factor

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

C
os

t (
$)

Server-Side Group-By Filtered Group-By Hybrid Group-By

Compute Request Scan TransferCompute Request Scan Transfer

(b) Cost

Fig. 7: Data skew — Performance and cost with different
levels of skew in group sizes.

reduces the amount of data transferred over the network. The
final execution time is determined by the maximum of the
two bars shown in Figure 6. Overall, having 6 to 8 groups
aggregated in S3 offers the best performance.

Figure 7 shows the performance and cost of three group-by
algorithms as the level of skew in group sizes increases. Across
all levels of skew, the performance and cost of server-side
and filtered group-by remain the same. In both algorithms, the
amount of data loaded from S3 and the computation performed
on the server are independent of data distribution. When
the workload has high skew, the performance advantage of
pushing group-by to S3 is evident. With θ = 1.3, hybrid group-
by performs 31% better than filtered group-by. However,
hybrid group-by does not have a cost advantage over the other
two algorithms, since it has to scan the table one more time
than filtered group-by. This extra table scan can be avoided
by improving the interface of S3 Select.

VII. TOP-K

Top-K is a common operator that selects the maximum or
minimum K records from a table according to a specified
expression. In this section, we discuss a sampling-based ap-
proach that can significantly improve the efficiency of top-K
using S3 Select.

A. Sampling-Based Top-K Algorithm

The number of records returned by a top-K query, K, is
typically much smaller than the total number of records in the
table, N . Therefore, transferring the entire table from S3 to

the server is inherently inefficient. We designed a sampling-
based two-phase algorithm to resolve this inefficiency: the first
phase samples the records from the table and decides what
subset of records to load in the second phase; then in the
second phase, the query execution node loads this subset of
records and performs the top-K computation on it. We use the
following example query for the rest of the discussion.

SELECT *
FROM lineitem
ORDER BY l_extendedprice ASC
LIMIT K;

Listing 6: Example top-K query

During the first phase, we obtain a conservative estimate
of a subset that must contain the top-K records. Specifically,
the system loads a random sample of S (> K) records from
the S3 and uses the Kth smallest l_extendedprice as
the threshold. If the data in the table is random, then the
algorithm can simply request the first S records from the table.
Otherwise, if the data distribution in the l_extendedprice
column is not random, then a random sample of S records
can be obtained by requesting a number of data chunks using
random byte offsets from the data table. The sampling process
guarantees that the top-K records must be below the threshold,
since we have already seen K records below the threshold in
the sample. In the second phase, the algorithm uses S3 Select
to load records below the threshold.

The number of records returned in the second phase should
be between K and N . The algorithm then uses a heap to select
the top-K records from all returned records.

B. Analysis

An important parameter in the sampling-based algorithm is
the sample size S, which is crucial to the efficiency of the
algorithm. A small S means the second phase will load more
data from S3, while a large S means the sampling phase will
take significant time. The goal of the sampling-based top-K
algorithm is to reduce data traffic from S3. We can obtain
the sample size that minimizes data traffic using the following
analysis:

Assume each row contains B bytes, the table contains
N rows, and the sample contains S rows. We also assume
that only a fraction (α ≤ 1) of the bytes in a record is
needed during the sampling phase, because the expression
in the ORDER BY clause does not necessarily require all
the columns. We assume the sampling process is uniformly
random. The total number of bytes loaded from S3 during the
first phase is:

D1 = αSB

The Kth record from the sample is selected as the threshold.
Based on the random sampling assumption, the system loads
KN/S records in phase 2. Therefore, the total number of bytes
loaded from S3 in phase 2 is:

D2 = KNB/S



103 104 105 106 107

Sample Size

0
1
2
3
4
5
6
7
8

R
un

tim
e 

(s
ec

) Sampling Phase Scanning Phase

0.0

0.2

0.4

0.6

0.8

1.0

B
yt

es
 R

et
ur

ne
d 

(G
B

)

(a) Runtime

103 104 105 106 107

Sample Size

0.000

0.005

0.010

0.015

0.020

C
os

t (
$) Compute Cost

Request Cost
Scan Cost
Transfer Cost

(b) Cost
Fig. 8: Sensitivity to sample size — Performance and cost of
the sampling-based top-K as the sample size changes.

The total amount of data loaded from S3 (D) is the sum of
data loaded during both phases:

D = D1 +D2 = αSB +
KNB

S

The value of S that minimizes D can be found by obtaining
the derivative of the above expression w.r.t S and equating it
to zero. This gives S =

√
KN
α . Given a fixed table size, a

smaller α leads to a bigger S. This is because if sampling
does not consume significant bandwidth, it is worthwhile to
sample more records to improve overall bandwidth efficiency.

C. Performance Evaluation

In this section, we evaluate the performance of different top-
K algorithms using the lineitem table of the TPC-H data set.
We use a scale factor of 10, meaning that the lineitem table is
7.25 GB in size and contains 60 million rows. The example
query in Listing 6 is used.

1) Sensitivity to Sample Size: We first study how the
performance and cost of the sampling-based algorithm change
with respect to the sample size S. For this experiment, we fix
K to 100, and increase S from 103 to 107. Note that 103 is
10 times K, and 107 is 1/6 of the entire table.

In Figure 8a, each bar shows the runtime of a query at
a particular sample size. Each bar is broken down into two
portions: the sampling phase (phase 1) and the scanning phase
(phase 2). The line shows the total amount of data returned
from S3 to the server.

As the sample size increases, the execution time of the
sampling phase also increases. This is expected because more
data needs to be sampled and returned. On the other hand,
the execution time of the scanning phase decreases. This is
because a larger sample leads to a more stringent threshold,
and therefore fewer qualified rows in the scanning phase. The
amount of data returned from S3 first decreases due to the
dropping S3 traffic in the scanning phase, and later increases

1 10 102 103 104 105

K

0

50

100

150

200

R
un

tim
e 

(s
ec

) Server-Side Top-K Sampling Top-K

(a) Runtime

1 10 102 103 104 105

K

0.00
0.02
0.04
0.06
0.08
0.10

C
os

t (
$)

Server-Side Top-K Sampling Top-K

Compute Cost
Request Cost
Scan Cost
Transfer Cost

Compute Cost
Request Cost
Scan Cost
Transfer Cost

(b) Cost
Fig. 9: Sensitivity to K — Performance and cost of server-
side and sampling top-K as K increases.

due to the growing traffic of the sampling phase. Overall,
the best performance and network traffic efficiency can be
achieved in the middle, when the sample size is around 105.
This result is consistent with our analysis. According to our
model, with K = 100, N = 6 × 107, and α = 0.1, the
calculated optimal sample size S =

√
KN
α = 2.4× 105. The

performance of the algorithm is stable in a relatively wide
range of values around this optimal S.

Figure 8b shows the query cost with varying sample size.
Most of the cost is due to data scanning, with most of this
due to the scanning phase (phase 2).

2) Server-Side vs. Sampling Top-K: We now compare the
performance of the sampling-based top-K with the baseline
algorithm that loads the entire table and performs top-K at the
server side. K is swept from 1 to 105 (105 rows comprise
0.17% of the table). For the sampling-based algorithm, the
sample size is calculated using the model in Section VII-B.

Figure 9a shows that for both algorithms, runtime increases
as K increases. This is because a larger K requires a bigger
heap and also more computation at the server side. The
sampling-based top-K algorithm is consistently faster than the
server-side top-K due to the reduction in the amount of data
loaded from S3.

In Figure 9b, we observe that the sampling-based top-K
algorithm is also consistently cheaper than server-side top-K.
When K is small, the majority of the cost in the sampling-
based algorithm is data scanning. As K increases, the data
scan cost does not significantly change, but the computation
cost increases due to the longer time spent obtaining the top-K
using the heap.

VIII. TPC-H RESULTS

In this section, we evaluate a representative query for each
individual operator discussed in Sections IV – VII, as well as
a subset of the TPC-H queries. Each experiment evaluates the
following two configurations:



Filter Group-by Top-K Join TPCH Q1 TPCH Q3 TPCH Q6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
0

10
20
30
40
50
60
70
80

R
un

tim
e 

(s
ec

) 181 PushdownDB (Baseline) PushdownDB (Optimized)

(a) Runtime

Filter Group-by Top-K Join TPCH Q1 TPCH Q3 TPCH Q6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
0.00
0.02
0.04
0.06
0.08
0.10
0.12

C
os

t (
$)

PushdownDB (Baseline) PushdownDB (Optimized)Compute Cost
Request Cost
Scan Cost
Transfer Cost

Compute Cost
Request Cost
Scan Cost
Transfer Cost

(b) Cost
Fig. 10: Performance and cost of various queries on PushdownDB.

PushdownDB (Baseline): This is the PushdownDB im-
plementation described in Section III but not including S3
Select features. The server loads the entire table from S3 and
performs computation locally.

PushdownDB (Optimized): The PushdownDB that in-
cludes the optimizations discussed in this paper.

The experiments use the 10 GB TPC-H dataset. The results
are summarized in Figure 10. From left to right, the figure
shows performance and cost of individual operators (shaded
in green), TPC-H queries (shaded in yellow), and geometric
mean (shaded in light blue). The geo-mean cost only contains
the total cost, not broken down into individual components.

As we can see, the optimizations discussed in this paper
can significantly improve the performance of various types of
queries. On average, the optimized PushdownDB outperforms
the baseline PushdownDB by 6.7× and reduces the cost by
30%. We assume a database can use various statistics of the
underlying data to determine which algorithm to use for a
particular query. Dynamically determining which optimization
to use is orthogonal to and beyond the scope of this paper.

To validate these results, we also compared the execu-
tion time of PushdownDB to Presto, a highly optimized
cloud database written in Java. We use Presto v0.205 as a
performance upper bound when S3 Select is not used. On
average, the runtime of baseline PushdownDB is slower than
Presto by less than 2×, demonstrating that the code base of
PushdownDB is reasonably well optimized. The optimized
PushdownDB outperforms Presto by 3.4×.

IX. EXPERIMENTS WITH PARQUET

In addition to CSV, S3 Select supports queries on the
Parquet columnar data format [14]. In this section, we study
whether Parquet offers higher performance than CSV.

Figure 11 shows the runtime of filter queries against both
data formats. We implemented three tables with 1, 10, and 20
columns; each column contains 100 MB of randomly gener-
ated floating point numbers with limited precision (rounded to
four decimals). The Parquet tables use Snappy compression
with a row group (i.e., logical partitioning of the data into

0 0.01 0.1 0.5 1
Filter Selectivity

0

5

10

15

20

25

30

R
un

tim
e 

(s
ec

)

CSV 1-col
Parquet 1-col

CSV 10-col
Parquet 10-col

CSV 20-col
Parquet 20-col

Fig. 11: Performance of CSV vs. Parquet

rows) of 100 MB. The compressed Parquet is 70% of its
original size. We also tested Parquet data without compression
and with different row group sizes but they lead to similar
performance, and are therefore not shown here. The queries
return a single filtered column of the table, with filtering
selectivity ranging from 0 (returning no data) to 1 (returning
all data).

As shown in Figure 11, Parquet substantially outperforms
CSV in the 10 and 20 column cases, where the query requests
a small fraction of columns. In this case, our query scans only
a single column of Parquet data but has to scan the entire
CSV file — Parquet outperforms CSV due to less IO overhead
on S3 Select servers. We also observe that the performance
advantage of Parquet over CSV is more prominent when the
filter is more selective — when more data passes through, data
transfer becomes the bottleneck so CSV and Parquet achieve
similar performance. This is mainly because the current S3
Select always returns data in CSV format, even if the data
is stored in Parquet format, which leads to unnecessarily
large network traffic for data transfer. A potential solution to
mitigate this problem is to compress transferred data. Thus, in
the current S3 Select, Parquet offers a performance advantage
over CSV only in extreme cases when the query touches a
small fraction of columns and the data transfer over network
is not a bottleneck.

We have evaluated the same TPC-H queries as in Sec-
tion VIII on Parquet data. Although the performance numbers
are not shown, Parquet on TPC-H has very limited (if any)
performance advantage over CSV format. This is because the



data accesses of TPC-H queries do not exhibit the extreme
patterns as discussed above.

X. LIMITATIONS OF S3 SELECT

So far, we have demonstrated substantial performance im-
provement on common database operators by leveraging S3
Select. In this section, we present a list of limitations of the
current S3 Select features and describe our suggestions for
improvement.

Suggestion 1: Multiple byte ranges for GET requests.
The indexing algorithm discussed in Section IV-A sends HTTP
GET requests to S3 to load records from the table; each request
asks for a specified range of bytes that are derived from an
index table lookup. According the S3 API [20], the current
GET request to S3 supports only a single byte range. This
means that a large number of GET requests have to be sent if
many records are selected by a query. Excessive GET requests
can hurt performance as shown in Figure 1. Allowing a single
GET request to contain multiple byte ranges, which is allowed
by HTTP, can significantly reduce the cost of HTTP request
processing in both the server and S3.

Suggestion 2: Index inside S3. A more thorough solution to
the indexing problem is to build the index structures entirely
inside S3. This avoids many network messages between S3
and the server that are caused by accesses to the index data
structure during an index lookup. S3 can handle the required
logic on behalf of the server, like handling hash collisions in
a hash index or traversing through the tree in a B-tree index.

Suggestion 3: More efficient Bloom filters. Bloom filters
can substantially improve performance of join queries, as
demonstrated in Section V. A Bloom filter is represented
using a bit array for space efficiency. The current S3 Select,
however, does not support bit-wise operators. Our current
implementation of a Bloom join in S3 Select uses a string
of 0s and 1s to represent the bit array, which is space- and
computation-inefficient. We suggest that the next version of S3
Select should support efficient bit-wise operators to improve
the efficiency of Bloom join.

Suggestion 4: Partial group-by. Section VI-B introduced
our hybrid group-by algorithm and demonstrated its superior
performance. Since S3 does not support group-by queries, we
used the CASE clause to implement S3-side group-by, which is
not the most efficient implementation. We suggest adding par-
tial group-by queries to S3 to resolve this performance issue.
Note that pushing an arbitrary group-by query entirely to S3
may not be the best solution, because a large number of groups
can consume significant memory space and computation in S3.
We consider the partial S3-side group-by as an optimization
to the second phase of our current hybrid group-by.

Suggestion 5: Computation-aware pricing. Across our
evaluations on the optimized PushdownDB, data scan costs
dominate a majority of queries. In the current S3 Select
pricing model, data scanning costs a fixed amount ($0.002/GB)
regardless of what computation is being performed. Given
that our queries typically require little computation in S3, the
current pricing model may have overcharged our queries. We

believe a fairer pricing model is needed, in which the data
scan cost should depend on the workload.

XI. RELATED WORK

A. In-Cloud Databases

Database systems are moving to the cloud environment
due to cost. Most of these in-cloud databases support stor-
ing data within S3. Vertica [21], a traditional column-store
shared nothing database, started to support S3 in its new Eon
mode [22]. Snowflake [2] is a software-as-a-service (SaaS)
database designed specifically for the cloud environment.
Many open-source in-cloud databases have been developed
and widely adopted, examples including Presto [1], Hive [12],
and Spark SQL [13]. Furthermore, AWS offers a few propri-
etary database systems in the cloud: Athena [23], Aurora [24],
and Redshift [3].

Among the systems mentioned above, Presto, Spark, and
Hive support S3 Select in Amazon Elastic MapReduce (EMR)
in limited form. For example, Presto supports pushing pred-
icates to S3 but does not support data types like timestamp,
real, or double. Furthermore, these systems currently support
only simple filtering operations but not complex ones like join,
group-by, or top-K, which are what PushdownDB focuses on.

The Spectrum feature of Redshift offloads some query
processing on data stored in S3 to the “Redshift Spectrum
Layer” such that more parallelism can be exploited beyond
the capability of the cluster created by the user. The ideas
discussed in this paper can be applied to the Redshift Spectrum
setting to improve performance of complex database operators.

B. Database Machines

A line of research on database machines emerged in the
1970s and stayed active for more than 10 years. These systems
contain processors or special hardware to accelerate database
accesses, by applying the principle of pushing computation to
where the data resides.

The Intelligent Database Machines (IDM) [7] from Britton
Lee separated the functionality of host computers and the
database machine which sits closer to the disks. Much of
a DBMS functionality can be performed on the database
machine, thereby freeing the host computers to perform other
tasks. Grace [25] is a parallel database machine that contains
multiple processors connected to multiple disk modules. Each
disk module contains a filter processor that can perform
selection using predicates and projection to reduce the amount
of data transfer as well as computation in the main processors.

More recently, in the 2000s, IBM Netezza data warehouse
appliances [9] used FPGA-enabled near-storage processors
(FAST engines) to support data compression, projection, and
row selection. In Oracle’s Exadata [8] database engines, the
storage unit (Exadata Cell) can support predicate filtering,
column filtering, Bloom join, encryption, and indexing among
other functionalities.



C. Near-Data Processing (NDP)

Near-data processing has recently attracted much research
interest in the computer architecture community [26]. Tech-
niques have been proposed for memory and storage devices
in various part of the system. Although the techniques in this
paper were proposed assuming a cloud storage setting, many
of them can be applied to the following other settings as well.

Processing-in-Memory (PIM) [27] exploits computation
near or inside DRAM devices to reduce data transfer between
CPU and main memory, which is a bottleneck in modern
processors. Recent development in 3D-stacked DRAM im-
plements logic at the bottom layer of the memory chip [28],
supporting in-memory processing with lower energy and cost.

While smart disks have been studied in the early 2000s [29],
[30], they have not seen wide adoption due to the limitations
of the technology. The development of FPGAs and SSDs in
recent years has made near storage computing more practical.
Recent studies have proposed to push computation to both
near-storage FPGAs [31], [32] and the processor within an
SSD device [33], [34], [35]. Most of these systems only
focused on simple operators like filter or projection, but did
not study the effect of more complex operators as we do in
PushdownDB.

Hybrid shipping techniques execute some query operators
at the client side, where the query is invoked, and some at the
server side, where data is stored [36]. However, near-storage
computing services as S3 do not support complex operators
such as joins. Hybrid shipping does not consider how to push
down only some of the steps involved in the implementation
of a single operator, which is what PushdownDB addresses.

XII. CONCLUSION

This paper presents PushdownDB, a data analytics engine
that accelerates common database operators by performing
computation in S3 via S3 Select. PushdownDB reduces both
runtime and cost for a wide range of operators, including
filter, project, join, group-by, and top-K. Using S3 Select,
PushdownDB improves the average performance of a subset
of the TPC-H queries by 6.7× and reduces cost by 30%.

REFERENCES

[1] “Presto,” https://prestodb.io, 2018.
[2] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock,

J. Claybaugh, D. Engovatov, M. Hentschel, J. Huang et al., “The
Snowflake Elastic Data Warehouse,” in SIGMOD, 2016.

[3] “Amazon Redshift,” https://aws.amazon.com/redshift/, 2018.
[4] J. Tan, T. Ghanem, M. Perron, X. Yu, M. Stonebraker, D. DeWitt,

M. Serafini, A. Aboulnaga, and T. Kraska, “Choosing A Cloud DBMS:
Architectures and Tradeoffs,” in VLDB, 2019.

[5] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani,
and V. Srinivasan, “Amazon Redshift and the Case for Simpler Data
Warehouses,” in SIGMOD, 2015.

[6] R. B. Hagmann and D. Ferrari, “Performance analysis of several back-
end database architectures,” ACM Transactions on Database Systems
(TODS), vol. 11, no. 1, pp. 1–26, 1986.

[7] M. Ubell, “The Intelligent Database Machine (IDM),” in Query process-
ing in database systems. Springer, 1985, pp. 237–247.

[8] R. Weiss, “A Technical Overview of the Oracle Exadata Database
Machine and Exadata Storage Server,” Oracle White Paper. Oracle
Corporation, Redwood Shores, 2012.

[9] P. Francisco, “The Netezza Data Appliance Architecture,” 2011.

[10] R. Hunt, “S3 Select and Glacier Select Retrieving Subsets of Objects,”
https://aws.amazon.com/blogs/aws/s3-glacier-select/, 2018.

[11] “Amazon S3,” https://aws.amazon.com/s3/, 2018.
[12] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,

S. Antony, H. Liu, and R. Murthy, “Hive — A Petabyte Scale Data
Warehouse Using Hadoop,” in ICDE, 2010.

[13] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark SQL:
Relational Data Processing in Spark,” in SIGMOD, 2015.

[14] “Apache Parquet,” https://parquet.apache.org, 2016.
[15] W. McKinney, “pandas: a Foundational Python Library for Data Anal-

ysis and Statistics,” Python for High Performance and Scientific Com-
puting, pp. 1–9, 2011.

[16] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[17] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

[18] P. Almeida, C. Baquero, N. Preguica, and D. Hutchison, “Scalable bloom
filters,” Information Processing Letters, vol. 101, no. 6, pp. 255–261,
2007.

[19] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J. Weinberger,
“Quickly Generating Billion-Record Synthetic Databases,” in Acm Sig-
mod Record, vol. 23, no. 2, 1994, pp. 243–252.

[20] “Amazon Simple Storage Service, GET Object,” https://docs.aws.
amazon.com/AmazonS3/latest/API/RESTObjectGET.html, 2006.

[21] A. Lamb, M. Fuller, R. Varadarajan, N. Tran, B. Vandiver, L. Doshi,
and C. Bear, “The Vertica Analytic Database: C-Store 7 Years Later,”
VLDB, 2012.

[22] B. Vandiver, S. Prasad, P. Rana, E. Zik, A. Saeidi, P. Parimal, S. Pantela,
and J. Dave, “Eon Mode: Bringing the Vertica Columnar Database to
the Cloud,” in SIGMOD, 2018.

[23] “Amazon Athena — Serverless Interactive Query Service,” https://aws.
amazon.com/athena/, 2018.

[24] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao, “Amazon
Aurora: Design Considerations for High Throughput Cloud-Native Re-
lational Databases,” in SIGMOD, 2017.

[25] S. Fushimi, M. Kitsuregawa, and H. Tanaka, “An Overview of The
System Software of A Parallel Relational Database Machine GRACE,”
in VLDB, 1986.

[26] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy,
R. Nair, and S. Swanson, “Near-Data Processing: Insights from a
MICRO-46 Workshop,” IEEE Micro, 2014.

[27] S. Ghose, K. Hsieh, A. Boroumand, R. Ausavarungnirun, and O. Mutlu,
“Enabling the Adoption of Processing-in-Memory: Challenges, Mech-
anisms, Future Research Directions,” arXiv preprint arXiv:1802.00320,
2018.

[28] HybridMemoryCubeConsortium, “HMCSpecification2.1,” 2014.
[29] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle, “Active disks for

large-scale data processing,” Computer, vol. 34, no. 6, pp. 68–74, 2001.
[30] K. Keeton, D. A. Patterson, and J. M. Hellerstein, “A case for intelligent

disks (idisks),” ACM SIGMOD Record, vol. 27, no. 3, pp. 42–52, 1998.
[31] L. Woods, Z. István, and G. Alonso, “Ibex: an Intelligent Storage Engine

with Support for Advanced SQL Offloading,” VLDB, 2014.
[32] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable

Logic for Near-Data Processing,” in HPCA, 2016.
[33] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U. Kang,

M. Kwon, C. Yoon, S. Cho et al., “Biscuit: A framework for near-data
processing of big data workloads,” in ISCA, 2016.

[34] G. Koo, K. K. Matam, H. Narra, J. Li, H.-W. Tseng, S. Swanson, M. An-
navaram et al., “Summarizer: trading communication with computing
near storage,” in MICRO, 2017.

[35] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J. DeWitt, “Query
Processing on Smart SSDs: Opportunities and Challenges,” in SIGMOD,
2013.

[36] M. J. Franklin, B. T. Jónsson, and D. Kossmann, “Performance tradeoffs
for client-server query processing,” in ACM SIGMOD Record, vol. 25,
no. 2. ACM, 1996, pp. 149–160.

https://prestodb.io
https://aws.amazon.com/redshift/
https://aws.amazon.com/blogs/aws/s3-glacier-select/
https://aws.amazon.com/s3/
https://parquet.apache.org
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/

	I Introduction
	II Data Management in the Cloud
	II-A S3 Select
	II-B Computing Query Cost

	III Database Testbed: PushdownDB
	IV Filter
	IV-A Indexing with S3 Select
	IV-B Performance Evaluation

	V Join
	V-A Join Algorithms
	V-A1 Bloom Filter
	V-A2 Bloom Join in PushdownDB

	V-B Performance Evaluation
	V-B1 Customer Selectivity
	V-B2 Orders Selectivity
	V-B3 Bloom Filter False Positive Rate


	VI Group-By
	VI-A S3-Side Group-By
	VI-B Hybrid Group-By
	VI-C Performance Evaluation
	VI-C1 Uniform Group Size
	VI-C2 Skewed Group Sizes


	VII Top-k
	VII-A Sampling-Based Top-K Algorithm
	VII-B Analysis
	VII-C Performance Evaluation
	VII-C1 Sensitivity to Sample Size
	VII-C2 Server-Side vs. Sampling Top-K


	VIII TPC-H Results
	IX Experiments with Parquet
	X Limitations of S3 Select
	XI Related Work
	XI-A In-Cloud Databases
	XI-B Database Machines
	XI-C Near-Data Processing (NDP)

	XII Conclusion
	References

