CS 764: Topics in Database Management Systems
Lecture 1: Introduction

Xiangyao Yu
9/2/2020
Who am I?

Name: Xiangyao Yu

Assistant professor in computer sciences, database group

Research interests:

• Transaction processing
• New hardware for databases
• Cloud databases
Today’s Agenda

What is this course about?

Course logistics
Topics Covered in CS 764

• Query processing and buffer management
 - Join
 - Buffer management
 - Query optimization

• Advanced transaction processing
 - Granularity of locking
 - Optimistic concurrency control
 - B-tree
 - Aries recovery
 - Two-phase commit (2PC)

• Parallel and distributed DB
 - Parallel database
 - Distributed database
 - MapReduce

• Guest lectures
OLTP vs. OLAP

OLTP: On-Line Transaction Processing
• Users submit transactions that contain simple read/write operations
• Example: banking, online shopping, etc.

OLAP: On-Line Analytical Processing
• Complex analytics queries that reveal insights behind data
• Example: business report, marketing, forecasting, etc.

In modern databases, OLTP and OLAP are typically managed by two systems where the OLTP engine sends data to the OLAP engine periodically
Part I: Query processing and buffer management
Join (Lecture 1)

Table: Orders

<table>
<thead>
<tr>
<th>OrderID</th>
<th>CID</th>
<th>OrderDate</th>
</tr>
</thead>
<tbody>
<tr>
<td>10308</td>
<td>2</td>
<td>1996-09-18</td>
</tr>
<tr>
<td>10309</td>
<td>1</td>
<td>1996-09-19</td>
</tr>
<tr>
<td>10310</td>
<td>3</td>
<td>1996-09-20</td>
</tr>
</tbody>
</table>

Table: Customers

<table>
<thead>
<tr>
<th>CID</th>
<th>CustomerName</th>
<th>ContactName</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfreds Futterkiste</td>
<td>Maria Anders</td>
<td>Germany</td>
</tr>
<tr>
<td>2</td>
<td>Ana Trujillo helados</td>
<td>Ana Trujillo</td>
<td>Mexico</td>
</tr>
<tr>
<td>3</td>
<td>Antonio Moreno Taquería</td>
<td>Antonio Moreno</td>
<td>Mexico</td>
</tr>
</tbody>
</table>

```sql
SELECT CustomerName, OrderDate
FROM Orders, Customers
WHERE Orders.CID = Customers.CID
```
Buffer Management (Lecture 2)

By default, data is stored on disk
Memory is orders of magnitude faster than disk
What pages to keep in memory is critical to performance
(Classic caching problem with its unique properties)

Transparent to higher level DB operations
Tables: Course, Student, Takes

SELECT Course.name, count(*)
FROM Student, Course, Takes
WHERE Student.sid = Takes.sid
 Course.cid = Takes.cid
 Student.dept = 'CS'
 Student.year = 2020
GROUP BY Course.name

Is this plan optimal?
Part II: Advanced transaction processing
Transaction

The basic unit of work in a database

ACID: Atomicity, Consistency, Isolation, Durability

Concurrency control

(Lecture 4 & 5)
Transaction

The basic unit of work in a database

ACID: Atomicity, Consistency, Isolation, Durability

- **B-tree** (Lecture 6)
- **Index**
- **Transactions**
- **Tuples**

Concurrency control (Lecture 4 & 5)
Transaction

The basic unit of work in a database

ACID: Atomicity, Consistency, Isolation, Durability

[Diagram showing transactions, B-tree, index, tuples, disk, concurrency control, and logging connections]
Transaction

The basic unit of work in a database

ACID: Atomicity, Consistency, Isolation, Durability

Two-Phase Commit (2PC) (Lecture 8)
Part III: Parallel and distributed DB
Parallelism

- CPU
- Memory
- Disk
Parallelism

Multi-core CPU or GPU (Lecture 9)
Parallelism

Multicore CPU or GPU (Lecture 9)

Distributed databases (Lecture 10)
Course Logistics
Course Information

Website: pages.cs.wisc.edu/~yxy/cs764-f20

Prerequisite: CS 564

Office Hour: Monday 2:30—3:30pm on BBCollaborate Ultra

Reference textbooks:

• Red book
• Cow book
Lecture Format

Paper reading: one classic paper per lecture

Upload review: https://wisc-CS764-F20.hotcrp.com (please try to submit at least 60 min before the lecture starts)
- Paper summary
- Strength
- Weakness
- Comments and questions

Lecture

Group discussion (groups of 4—6 students)

Submit discussion summary: https://wisc-CS764-F20.hotcrp.com
Grading

Paper review: 15%

Exam: 35%

Project proposal: 5%

Project final report: 35%

Project presentation: 10%
Course Project

In **groups of 2—4** students

A list of example project ideas will be provided but you are encouraged to propose your own ideas

See previous projects here:

Computation Resources

CloudLab

Chameleon

https://www.chameleoncloud.org

AWS: Apply for free credits at

https://aws.amazon.com/education/awseducate/

Oracle Cloud: Please contact the instructor if you are interested in this option.
Important Dates

Proposal due: Oct. 21

Exam: Nov. 4

Presentation: Dec. 7 & 9

Paper submission: Dec. 18
Before next lecture

Next lecture is Sep. 9, Wednesday

Read the following paper and submit review

Register for https://wisc-cs764-f20.hotcrp.com