WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 14: MapReduce

Xiangyao Yu
10/21/2020

Announcement

Mid-term course evaluation DDL: 10/23
Please submit project proposal to the review website DDL: Oct 26

Please submit a review for the guest lecture within 3 days after the
lecture DDL: Oct 28 11:59pm

Today’s Paper: MapReduce

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat

jeff@google.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:
a typical MapReduce computation processes many ter-
abytes of data on thousands of machines. Programmers
find the system easy to use: hundreds of MapReduce pro-
grams have been implemented and upwards of one thou-
sand MapReduce jobs are executed on Google’s clusters
every day.

1 Introduction

Over the past five years, the authors and many others at
Google have implemented hundreds of special-purpose

OSDI 2004

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-
propriately. Our use of a functional model with user-
specified map and reduce operations allows us to paral-
lelize large computations easily and to use re-execution
as the primary mechanism for fault tolerance.

The major contributions of this work are a simple and
powerful interface that enables automatic parallelization
and distribution of large-scale computations, combined
with an implementation of this interface that achieves
high performance on large clusters of commodity PCs.

Section 2 describes the basic programming model and
gives several examples. Section 3 describes an imple-
mentation of the MapReduce interface tailored towards

Outline

Background

MapReduce
* Programming model
* Implementation
» Optimizations

MapReduce vs. Databases

Challenges in Distributed Programming

'Within a server] Multi-threading

Across servers] Inter-server communication (MPI, RPC, etc.)
~ault tolerance

_oad balancing

Scalability

Distributed Challenges in Databases?

[Within a server] Multi-threading

[Across servers] Inter-server communication (MPI, RPC, etc.)
* The interface is SQL, parallelism is invisible to users

Fault tolerance
* Logging and high availability, invisible to users

Load balancing

Scalability
« Shared-nothing databases are very scalable

Limitations of Distributed Databases

Programming model: SQL
Data format: Relational (i.e., structured)

Lack of support for failures during an OLAP query

MapReduce

MapReduce Programming Model

A user of the MapReduce library writes two functions:

Map function
* Input: <key, value>
« Output: list(<key, value>)

Reduce function
* Input: <key, list(value)>
* Output: list(value)

MapReduce Programming Model

A user of the MapReduce library writes two functions:

Example: word count

Map function | |
map (String key, String value):

* InDUt: <key’ value> // key: document name
 Qutput: list(<key, value>) // value: document contents
for each word w 1n value:
EmitIntermediate (w, "1");

Reducer function
o Input' <key Iist(value)> reduce (String key, Iterator wvalues):
. ’ // key: a word

* OUtpUt: Ilst(value) // values: a list of counts
int result = 0;
for each v 1n values:
result += Parselnt (v);

Emit (AsString(result));
10

Other Application Examples

Grep:
« Map: emits a line if it matches the pattern
* Reduce: identity function—copy input to output

11

Other Application Examples

Grep:
« Map: emits a line if it matches the pattern
* Reduce: identity function—copy input to output

Count of URL access frequency:
 Map: emit (URL, 1)
* Reduce: adds values for the same URL and emits (URL, total count)

12

Other Application Examples

Grep:
« Map: emits a line if it matches the pattern
* Reduce: identity function—copy input to output

Count of URL access frequency:
 Map: emit (URL, 1)
* Reduce: adds values for the same URL and emits (URL, total count)

Reverse web-link graph:
« Map: outputs (target, source) for each target URL found in page source

* Reduce: concatenates sources associated with a given target (target,
list(source))

13

Other Application Examples

Grep:
« Map: emits a line if it matches the pattern
* Reduce: identity function—copy input to output

Count of URL access frequency:
 Map: emit (URL, 1)
* Reduce: adds values for the same URL and emits (URL, total count)
Reverse web-link graph:
« Map: outputs (target, source) for each target URL found in page source
* Reduce: concatenates sources associated with a given target (target,
list(source))
Inverted index:

* Map: Emit (word, doc ID) for words in a document
* Reduce: for a word, sorts document IDs and emits (word,list(doc ID)) 14

Implementation

Google File System (GFS)

CPU CPU CPU
Mem Mem Mem
ThOl;.s.ands
of servers
| Network
v

15

Implementation

(1) fork .

@
_.assign
map

worker

User
Program

(1) fork

1) fork

_‘)

assign

reduce .

0t

split 0
Spht 1 (5) remote read
Split 2 (3) read (4) local write
worker >
split 3
split 4
worker
Input Map Intermediate files
files phase (on local disks)

worker

Reduce
phase

(6) write

output
file O

output
file 1

Output

files

CPU CPU CPU
Mem Mem Mem
ThOl;-s.ands
of servers
| Network

Google File System (GFS)

16

Implementation — Step 1

User
Program CPU CPU CPU

(1) fork .+ Gk ok Mem Mem Mem
I Thousands
. @ 8 of servers
; (2 E
. 2 . ‘ as(s_i)gn
- _assign reduce .
' map .Y
— @ Jl Network
Split 0 (6) write output ‘ .
split 1 (5) remmote zead worker file 0 Google File System (GFS)
. | J3) read ' i
Splft 2 _@ (4) local write . p——]]]]
T file 1 Splits input files into M
split .
— G pieces (16 to 64 MB per

worker piece)

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Implementation — Step 2

reduce reduce
User map map map
Program [© U [CT O o0
(l)fork‘_' (l)fo}k I'(l)_fork Mem Mem Mem
- . Thousands
@ . of servers
: 7 @
: 2. assign -
c . assign reduce . .
Lot map
. | Network
split 0 . ~ | J
(6) write output
split 1 worker file 0 Google File System (G FS)

(5) remote read
Split 2 (3) read K (4) local write |
— worker - output .
File 1 Assign M map and R

split 4
- reduce tasks to servers

Input Map Intermediate files Reduce Output
files phase (on local disks) phase files

Implementation — Step 3

User
Program

(1) fork .

@

.assign

.E :

(1) fork

_‘)

1) fork

assign

reduce .

split 0
Spht 1 (5) remote read
Split 2 (3) read (4) local write
worker >

split 3
split 4

Input Map Intermediate files

files phase (on local disks)

(6) write
output
worker file 0

@ output
file 1

Reduce Output
phase files

reduce reduce
map map map
I \ v} U I i U \ v pa v
“output igm] [Wiem outout. Mom! output |
ThOl;-s.ands
of servers
| Network
~ v

Google File System (GFS)

Execute map tasks and
write output to local
memory

19

Implementation — Step 4

reduce reduce
User map map map
Program [© U [CT O o0
(l)forg (1)folrk | (1)f0rk Mem Mem Mem
‘ A — — ThOl;-s.ands
@ of servers
. @)
.' (). dsslgn -
‘ .assign reduce .
e ' map
@ D [Network
Sp]_it 0 (6) write output ‘ 1
split 1 N worker file 0 Google File System (GFS)
split 2 M@ (4) local write
. W output ‘g .
s fle 1 Partition the output into
split . .
R regions and write
worker .
Cooner) them to disk
Input Map Intermediate files Reduce Output

files phase (on local disks) phase files

Implementation — Step 5

split 0

split 1

User
Program

(1) fork .

split 2

split 3

split 4

Input
files

. -, a) '
: (2)
’ red uce . '
R P
ead
M_‘O (4) local write
worker
G (I
Map Intermediate files
phase (on local disks)

worker

Reduce
phase

(6) write

output
file O

output
file 1

Output
files

reduce

Thousands
of servers

Google File System (GFS)

Reduce task reads
corresponding
intermediate data (i.e.,
output of map tasks)
and sort them

21

Implementation — Step 6

worker

split 0

split 1

split 2 (3) read

User
Program

1) fork .* : g
(D fork (1) fork (1) fork
_ @
2. assign
E as’sign reduce .)
map

(4) local write

(5) remote read

worker
split 3

split 4

worker

Input Map
files phase

0t

Intermediate files
(on local disks)

worker

Reduce
phase

(6) write

output
file O

output
file 1

Output
files

reduce reduce
me S e]
Mem Mem Mem
ThOl;-s.ands
of servers
| Network
~ v

Google File System (GFS)

Execute reduce tasks
and write output to GFS

22

Implementation — Step 7

split 0

split 1

split 2

(3) read

split 3

split 4

Input
files

worker

(D fork‘ L

(2)-

map

(4) local write

(1) fork

_‘)

.assign

I'(-'l‘)fork

assign

reduce .

(5) remote read

worker

!

worker

Map
phase

Intermediate files
(on local disks)

worker

Reduce
phase

(6) write

output
file O

output
file 1

Output

files

reduce reduce
vy (B e]
Mem Mem Mem
ThOl;-s.ands
of servers
| Network
~ v

Google File System (GFS)

Wake up the user
program after all map
and reduce tasks finish

23

Master Node

Orchestrates the MapReduce job

For each map task and reduce task, maintains states (idle, in-
progress, or complete) and identity of worker machine

Collect locations of map tasks’ outputs on disk and forward them to
the reduce tasks

24

Fault Tolerance

The master pings every worker periodically

At a timeout, reschedule tasks mapped to this worker to other workers
» Map task: all map tasks are rescheduled
* Reduce task: incomplete reduce tasks are rescheduled

Master failure
» Unlikely since the master is a single machine
« Abort the MapReduce computation if the master fails
 Single point of failure

25

Backup Tasks

A straggler task can take unusually long time to complete
» Bad disk
 Contention with other tasks on the server
» Misconfiguration

Solution: Schedule backup execution for in-progress tasks when the
MapReduce computation is close to finish

* Overhead is small (a few percent)

* Improvement is significant (44% for the sort program)

26

Other Optimizations

Locality

 Try to schedule a map task on a machine that contains (or is close to) a
replica of the corresponding input data

Combiner function
 Local reduce function on each map task to reduce the intermediate data size
 Similar to pushing down group-by in query optimization

27

Performance Evaluation — Grep

Grep
« 1 TB of 100-byte records

» Search for a rare three character pattern
« Map: emits a line if it matches the pattern
* Reduce: identity function—copy input to output

30000 —

20000 —

Input (MB/s)
S
S
|

-

' I ' I ' I ' I ' I
20 40 60 80 100

Seconds

Figure 2: Data transfer rate over time

Input data scan rate increases as more
machines assigned to the MapReduce
computation and peaks at over 30 GB/s when
1764 workers have been assigned

The rate declines after map tasks finish
reading the input data

28

Performance Evaluation — Sort

Sort
« 1 TB of 100-byte records
* Map: extract a 10-byte key and emit <key, original record in text>
* Reduce: identity function
* Partitioning function: range partition
* Note that a reducer task by default sorts its input data

29

Performance Evaluation — Sort

(

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

_

20000
Done
15000
10000 -

5000 —

0

20000 —
15000 —
10000 —

5000

—
500 1000

20000
15000
10000

5000

————
500 1000

—T— . .
500 1000

Seconds

(a) Normal execution

\

J

20000 —
15000 —
10000
5000

0

ne

20000
15000
10000

A
oL\
T

— T
500 1000

500 1000

20000
15000
10000
5000
500 1000
Seconds
(b) No backup tasks

Two batches of reduce tasks

20000
Daone
15000
10000

5000 —

20000
15000 -
10000 -

5000
0 /L ’/\~/M\

20000
15000
10000

5000

—— T .
500 1000

Seconds
(c) 200 tasks killed

30

Performance Evaluation — Sort

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 =

Done
15000 -
10000
5000 —
— —
500 1000
20000 —
15000 —
10000 —
UL
0 — e
500 1000
20000
15000
10000
L e
0 +—t— ————
500 1000
Seconds

(a) Normal execution

20000 —
ne
15000 —
10000
5000
0 ————————
500 1000
20000 —
15000
10000
5000 /\
0 A\
T T T T T
500 1000
20000
15000
10000
5000 [\.
ol 1™ I"V‘“\M_ —
500 1000
Seconds
\ (b) No backup tasks

~N

J

20000 =

Done
15000
10000 A
5000 —
0 VL'UL - —
500 1000
20000 —
15000 —
10000 —
5000 —
0 /L /\/’“‘\
N S
500 1000
20000
15000
10000
R NN
0+———= | L ———
500 1000
Seconds
(c) 200 tasks killed

Straggler tasks increase the total runtime by 44%

31

Performance Evaluation — Sort

Shuffle (MB/s) Input (MB/s)

Output (MB/s)

20000 =

Done
15000 -
10000
5000 —
— —
500 1000
20000 —
15000 —
10000 —
UL
0 — e
500 1000
20000
15000
10000
L e
0 +—t— ————
500 1000
Seconds

(a) Normal execution

ne

20000 —
15000 —
10000
5000
0 ————————
500 1000
20000 —
15000
10000
5000 /\
0 A\
T T T T T
500 1000
20000
15000
10000
5000 [\.
ol 1™ I"V‘“\M_ —
500 1000
Seconds
(b) No backup tasks

20000 =

\ (c) 200 tasks killed

Done
15000
10000 A
5000 —
0 VL'UL - —
500 1000
20000 —
15000 —
10000 —
“A_A,
L i
500 1000
20000
15000
10000
N N SR
0+———= 1
500 1000
Seconds

Failure of processes has small performance impact

32

MapReduce vs. Databases!!

With user defined functions, Map and Reduce functions can be
written in SQL; the shuffle between Map and Reduce is equivalent to
a Group-By

Performance

Hadoop DBMS-X Vertica Hadoop/DBMS-X Hadoop/Vertica
Grep 284s 194s 108x 1.5x 2.6x
Web Log 1,146s 740s 268s 1.6x 4.3x
Join 1,158s 32s 55s 36.3x 21.0x

[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010 33

MapReduce vs. Databases!!

Technical differences
* Repetitive parsing
« Compression
* Pipelining
» Scheduling
« Column-oriented storage
« Query optimization

[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010 34

MapReduce vs. Databases!!

Technical differences
* Repetitive parsing
« Compression
* Pipelining
» Scheduling
« Column-oriented storage
« Query optimization

Conclusions:

» Parallel DBMSs excel at efficient _ﬁtjerying of large data sets; MR-style systems
excel at complex analytics and ETL tasks.

« High-level languages are invariably a good idea for data-processing systems

 What can DBMS learn from MapReduce?
« Out-of-the-box experience (one-button install, auto tuning)
« Semi-structured or un-structured data

[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010 35

Q/A — MapReduce

Computational models that do not work well with MapReduce?

Is the master a single-point of failure and performance bottleneck?
Why old papers have no performance evaluation?

MapReduce used in DBMS? (e.g., Hadapt, Hive, SparkSQL)

Why is the atomic rename necessary in the reducer?

Other systems like MapReduce (e.g., Apache Hadoop, Spark)
Why do we need sorting and shuffling?

36

Discussion

How to implement the following joining query in MapReduce?
SELECT *
FROM S, R
WHERE S.id = R.id

37

Next Lecture

Mid-term course evaluation DDL: 10/23

Please submit your proposal to the review website: (DDL Oct 26)
* https://wisc-cs764-120.hotcrp.com

Please submit a review for the guest lecture within 3 days after the
lecture (by Oct 28 11:59pm)

38

https://wisc-cs764-f20.hotcrp.com/

